Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A proton synchrotron accelerates protons to a kinetic energy of 500 GeV. At this energy, calculate (a) the Lorentz factor, (b) the speed parameter, and (c) the magnetic field for which the proton orbit has a radius of curvature of 750 m.

Short Answer

Expert verified

(a) The Lorentz factor for proton is 534 .

(b) The speed parameter for proton is 0.99999 .

(c) The magnetic field for the electron is 0.178T.

Step by step solution

01

Identification of given data

The energy of proton is K=500GeV

The radius of curvature of orbit is 750m

The magnetic field for the electron is found by equating the necessary centripetal force by magnetic force on the electron.

02

Determination of Lorentz factor

(a)

The Lorentz factor is given as:

K=γ-1mc2

Here, qis the charge of proton and its value is 1.6×10-19C , m is the mass of proton and its value is 1.67×10-19C , c is the speed of light and its value is 3×108ms

Substitute all the values in the above equation.

500GeV1.6×109J1GeV=γ-11.67×10-27kg3×108ms2γ=534

Therefore, the Lorentz factor for proton is 534..

03

Determination of speed parameter

(b)

The speed parameter for proton is given as:

β=1-1γ2

Substitute all the values in the above equation.

β=1-15342

β=0.999999

Therefore, the speed parameter for proton is 0.999999.

04

Determination of magnetic field for proton

(c)

The magnetic field for proton is given as:

B=mcγ2-1qr

Substitute all the values in the above equation.

B=1.67×10-27kg3×108ms5342-11.6×10-19C750mB=2.23T

Therefore, the magnetic field for proton is 2.23T

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(Come) back to the future. Suppose that a father is 20.00 y older than his daughter. He wants to travel outward from Earth for 2.000 y and then back for another 2.000 y (both intervals as he measures them) such that he is then 20.00 y younger than his daughter. What constant speed parameter β (relative to Earth) is required?

Figure 37-17 shows two clocks in stationary frame S'(they are synchronized in that frame) and one clock in moving frame S. Clocks C1and C'1read zero when they pass each other. When clocks C1and C'2pass each other, (a) which clock has the smaller reading and (b) which clock measures a proper time?

The rest energy and total energy, respectively, of three particles, expressed in terms of a basic amount A are (1) A, 2A; (2) A, 3A; (3) 3A, 4A. Without written calculation, rank the particles according to their (a) mass, (b) kinetic energy, (c) Lorentz factor, and (d) speed, greatest first.

Figure 37-16 shows a ship (attached to reference frame S') passing us (standing in reference frame S) with velocity v=0.950ci^. A proton is fired at speed 0.980c relative to the ship from the front of the ship to the rear. The proper length of the ship is 760 m . What is the temporal separation between the time the proton is fired and the time it hits the rear wall of the ship according to (a) a passenger in the ship and (b) us? Suppose that, instead, the proton is fired from the rear to the front. What then is the temporal separation between the time it is fired and the time it hits the front wall according to (c) the passenger and (d) us?

The car-in-the-garage problem. Carman has just purchased the world’s longest stretch limo, which has a proper length of Lc=30.5 m. In Fig. 37-32a, it is shown parked in front of a garage with a proper length of Lg=6.00 m. The garage has a front door (shown open) and a back door (shown closed).The limo is obviously longer than the garage. Still, Garageman, who owns the garage and knows something about relativistic length contraction, makes a bet with Carman that the limo can fit in the garage with both doors closed. Carman, who dropped his physics course before reaching special relativity, says such a thing, even in principle, is impossible.

To analyze Garageman’s scheme, an xc axis is attached to the limo, with xc=0 at the rear bumper, and an xg axis is attached to the garage, with xg=0 at the (now open) front door. Then Carman is to drive the limo directly toward the front door at a velocity of 0.9980c(which is, of course, both technically and financially impossible). Carman is stationary in the xcreference frame; Garageman is stationary in the role="math" localid="1663064422721" Xgreference frame.

There are two events to consider. Event 1: When the rear bumper clears the front door, the front door is closed. Let the time of this event be zero to both Carman and Garageman: tg1=tc1=0. The event occurs at xg=xc=0. Figure 37-32b shows event 1 according to the xg reference frame. Event 2: When the front bumper reaches the back door, that door opens. Figure 37-32c shows event 2 according to the xg reference frame.

According to Garageman, (a) what is the length of the limo, and what are the spacetime coordinates (b) xg2 and (c) tg2 of event 2? (d) For how long is the limo temporarily “trapped” inside the garage with both doors shut? Now consider the situation from the xc reference frame, in which the garage comes racing past the limo at a velocity of 0.9980c. According to Carman, (e) what is the length of the passing garage, what are the spacetime coordinates (f) Xc2and (g) tc2 of event 2, (h) is the limo ever in the garage with both doors shut, and (i) which event occurs first? (j) Sketch events 1 and 2 as seen by Carman. (k) Are the events causally related; that is, does one of them cause the other? (l) Finally, who wins the bet?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free