Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the redshift of radiation from a distant galaxy, certain radiation, known to have a wavelength of 434 nm when observed in the laboratory, has a wavelength of 462 nm. (a) What is the radial speed of the galaxy relative to Earth? (b) Is the galaxy approaching or receding from Earth?

Short Answer

Expert verified

(a) The radial speed of the galaxy is 0.062c or 1.86×107m/s.

(b) The observed wavelength is longer than the proper wavelength; hence, the galaxy is receding from us.

Step by step solution

01

Doppler effect

(a)

In astronomy applications, the velocities of galaxies are estimated using Doppler shifts. Doppler shift is the difference between the observed and proper wavelength of light.The wavelength measured in the rest frame of the source is called proper wavelength λo. And the detected wavelength λis related to the proper wavelength as

λ=λo1+β1-β

Where, βis the speed parameter.

Inserting the given values in the above equations

λλo=1+β1-ββ=1-(λ0λ)21+(λ0λ)2=1-0.9421+0.942=0.062

Hence the radial velocity of the galaxy is 0.062c or 1.86×107m/s.

02

Redshift or blue shift.

(b)

If the observed wavelength is longer than the proper wavelength, it implies that the galaxy is moving away from us and is said to be red-shifted.

If the observed wavelength is shorter than the proper wavelength, it implies that the galaxy is moving toward us and is said to be blue-shifted.

Here, the observed wavelength is longer than the proper wavelength; hence, the galaxy is receding from us.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter


The premise of the Planet of the Apes movies and books is that hibernating astronauts travel far into Earth’s future, to a time when human civilization has been replaced by an ape civilization. Considering only special relativity, determine how far into Earth’s future the astronauts would travel if they slept for 120 y while traveling relative to Earth with a speed of 0.9990c, first outward from Earth and then back again?

Sam leaves Venus in a spaceship headed to Mars and passes Sally, who is on Earth, with a relative speed of 0.5c . (a) Each measures the Venus–Mars voyage time. Who measures a proper time: Sam, Sally, or neither? (b) On the way, Sam sends a pulse of light to Mars. Each measures the travel time of the pulse. Who measures a proper time: Sam, Sally, or neither?

Question: A certain particle of mass m has momentum of magnitude mc .What are (a) β, (b)γ, and (c) the ratioK/E0?

Question: Apply the binomial theorem (Appendix E) to the last part of Eq. 37-52 for the kinetic energy of a particle. (a) Retain the first two terms of the expansion to show the kinetic energy in the form

K=(firstterm)+(secondterm)

The first term is the classical expression for kinetic energy. The second term is the first-order correction to the classical expression. Assume the particle is an electron. If its speed vis c/20, what is the value of (b) the classical expression and (c) the first-order correction? If the electron’s speed is 0.80s, what is the value of (d) the classical expression and (e) the first-order correction? (f) At what speed parameter βdoes the first-order correction become 10%or greater of the classical expression?

A relativistic train of proper length 200 m approaches a tunnel of the same proper length, at a relative speed of 0.900c. A paint bomb in the engine room is set to explode (and cover everyone with blue paint) when the front of the train passes the far end of the tunnel (event FF). However, when the rear car passes the near end of the tunnel (event RN), a device in that car is set to send a signal to the engine room to deactivate the bomb. Train view: (a) What is the tunnel length? (b) Which event occurs first, FF or RN? (c) What is the time between those events? (d) Does the paint bomb explode? Tunnel view: (e) What is the train length? (f) Which event occurs first? (g) What is the time between those events? (h) Does the paint bomb explode? If your answers to (d) and (h) differ, you need to explain the paradox, because either the engine room is covered with blue paint or not; you cannot have it both ways. If your answers are the same, you need to explain why?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free