Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the speed parameter of a particle that takes 2.0 y longer than light to travel a distance of 6.0 ly.

Short Answer

Expert verified

The speed of the particle is 0.75c.

Step by step solution

01

Light Year

A light-year is a unit of distance where 1 ly is the distance that light travels in one year.

So it will take 6 years for the light to cover 6 ly distance. And the particle takes 2 years longer than light for the same distance. Hence the total time taken for the particle is 8 years.

02

The speed of the particle

The speed of the particle is

speed=totaldistancetotaltime=6ly8y=6×9.46×1015m8×3.156×107s=2.25×108m/s=0.75c

The speed of the particle is 0.75c.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: A certain particle of mass m has momentum of magnitude mc .What are (a) β, (b)γ, and (c) the ratioK/E0?

A spaceship, moving away from Earth at a speed of 0.900c, reports back by transmitting at a frequency (measured in the spaceship frame) of 100 MHz. To what frequency must Earth receivers be tuned to receive the report?

In Fig. 37-9, observer S detects two flashes of light. A big flash occurs at x1=1200mand , slightly later, a small flash occurs at x2=480m. The time interval between the flashes ist=t2-t1. What is the smallest value of t for which observer S' will determine that the two flashes occur at the same x' coordinate?

In Fig. 37-11, frame S' moves relative to frame S with velocity 0.62ci^ while a particle moves parallel to the common x and x' axes. An observer attached to frame S' measures the particle’s velocity to be 0.47ci^. In terms of c, what is the particle’s velocity as measured by an observer attached to frame S according to the (a) relativistic and (b) classical velocity transformation? Suppose, instead, that the S' measure of the particle’s velocity is -0.47ci^. What velocity does the observer in Snow measure according to the (c) relativistic and (d) classical velocity transformation?

Figure 37-16 shows a ship (attached to reference frame S') passing us (standing in reference frame S) with velocity v=0.950ci^. A proton is fired at speed 0.980c relative to the ship from the front of the ship to the rear. The proper length of the ship is 760 m . What is the temporal separation between the time the proton is fired and the time it hits the rear wall of the ship according to (a) a passenger in the ship and (b) us? Suppose that, instead, the proton is fired from the rear to the front. What then is the temporal separation between the time it is fired and the time it hits the front wall according to (c) the passenger and (d) us?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free