Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An unstable high-energy particle enters a detector and leaves a track of length 1.05 mm before it decays. Its speed relative to the detector was 0.992c. What is its proper lifetime? That is, how long would the particle have lasted before decay had it been at rest with respect to the detector?

Short Answer

Expert verified

The proper life time for particle is 0.446ps.

Step by step solution

01

Identification of given data

The speed of particle relative to detector is v=0.992c

The length of track is L=1.05mm

The time dilation is used to find the duration for particle before decay from detector.

02

Determination of proper life time before decay of particle

The proper life time for particle is given as:

t0=LV1-vc2

Here, is the speed of light and its value is 3×108m/s.

Substitute all the values in equation.

t0=1.05mm1m103mm0.992c3×108m/sc1-0.992cc2t0=0.0446×10-11st0=0.0446×10-11s1ps10-12st0=0.446ps

Therefore, the proper life time for particle is 0.446ps .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One cosmic-ray particle approaches Earth along Earth’s north-south axis with a speed of 0.80ctoward the geographic north pole, and another approaches with a speed of 0.60c toward the geographic south pole (Fig. 37- 34). What is the relative speed of approach of one particle with respect to the other?

A spaceship whose rest length is 350 m has a speed of 0.82c with respect to a certain reference frame. A micrometeorite, also with a speed of 0.82c in this frame, passes the spaceship on an antiparallel track. How long does it take this object to pass the ship as measured on the ship?

What is the speed parameter for the following speeds: (a) a typical rate of continental drift (1 in./y); (b) a typical drift speed for electrons in a current-carrying conductor (0.5 mm/s); (c) a highway speed limit of 55 mi/h; (d) the root-mean-square speed of a hydrogen molecule at room temperature; (e) a supersonic plane flying at Mach 2.5 (1200 km/h); (f) the escape speed of a projectile from the Earth’s surface; (g) the speed of Earth in its orbit around the Sun; (h) a typical recession of a distant quasar due to the cosmological expansion 3×104kms-1.

A space traveler takes off from Earth and moves at speed 0.9900ctoward the star Vega, which is 26.00lydistant. How much time will have elapsed by Earth clocks (a) when the traveler reaches Vega and (b) when Earth observers receive word from the traveler that she has arrived? (c) How much older will Earth observers calculate the traveler to be (measured from her frame) when she reaches Vega than she was when she started the trip?

Reference frame S'passes reference frameS with a certain velocity as in Fig. 37-9. Events 1 and 2 are to have a certain spatial separationx' according to theS' observer. However, their temporal separationt' according to that observer has not been set yet. Figure 37-30 gives their spatial separationx according to theS observer as a function of t'for a range ofrole="math" localid="1663054361614" t' values. The vertical axis scale is set by Δxa=10.0 m.What isΔx' ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free