Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A certain particle of mass m has momentum of magnitude mc .What are (a) β, (b)γ, and (c) the ratioK/E0?

Short Answer

Expert verified

Answer

  1. The value ofβis, 0.707.
  2. The value of γis, 1.414.
  3. The value ofKEo is, 0.414.

Step by step solution

01

Step 1: Identification of the given data

The particle’s momentum magnitude is mc.

02

Lorentz factor and speed parameter.

The Lorentz factor depends only on velocity and not on the particle’s mass and it is expressed as

γ=11-β2

βis called the speed parameter which is ratio of speed of particle to speed of light.

.β=V/C

03

Step 3(a and b): Solve the relativistic momentum equation for the given case.

It is given that a particle’s momentum magnitude is mc . The relativistic momentum relation is given by

p=γmv

Putting the given momentum in above expression, we get

mc=γmvγv=cγvc=1γβ=1 … (1)

We know that the Lorentz factor depends only on velocity and not on the particle’s mass and it is expressed as

γ=11-β2

Inserting this in equation (1), we get

β1-β2=1β2=1-β2β=12=0.707

Hence the value of βis, 0.707.

Putting the value ofβ in the equation (1),

γ=1β=10.707=1.414

The value of γis, 0.414.

04

Step 4(c): Determine the ratio K/E0.

The relativistic kinetic energy relation is given by

K=γ-1mc2=γ-1EoKEo=γ-1

Substitute all value in the above equation

KEo=1.414-=0.414

Hence the value of KEois,0.414 .

And thus, all the required values are determined.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 37-9, observer S detects two flashes of light. A big flash occurs at x1=1200mand, 5.00μslater, a small flash occurs at x2=480m. As detected by observer S', the two flashes occur at a single coordinate x'. (a) What is the speed parameter of S', and (b) is S' moving in the positive or negative direction of the x axis? To S', (c) which flash occurs first and (d) what is the time interval between the flashes?

Figure 37-20 shows the triangle of Fig 37-14 for six particles; the slanted lines 2 and 4 have the same length. Rank the particles according to (a) mass, (b) momentum magnitude, and (c) Lorentz factor, greatest first. (d) Identify which two particles have the same total energy. (e) Rank the three lowest-mass particles according to kinetic energy, greatest first.

Quite apart from effects due to Earth’s rotational and orbital motions, a laboratory reference frame is not strictly an inertial frame because a particle at rest there will not, in general, remain at rest; it will fall. Often, however, events happen so quickly that we can ignore the gravitational acceleration and treat the frame as inertial. Consider, for example, an electron of speed v =0.992c, projected horizontally into a laboratory test chamber and moving through a distance of 20 cm. (a) How long would that take, and (b) how far would the electron fall during this interval? (c) What can you conclude about the suitability of the laboratory as an inertial frame in this case?


The premise of the Planet of the Apes movies and books is that hibernating astronauts travel far into Earth’s future, to a time when human civilization has been replaced by an ape civilization. Considering only special relativity, determine how far into Earth’s future the astronauts would travel if they slept for 120 y while traveling relative to Earth with a speed of 0.9990c, first outward from Earth and then back again?

Superluminal jets. Figure 37-29a shows the path taken by a knot in a jet of ionized gas that has been expelled from a galaxy. The knot travels at constant velocity v at angleθ from the direction of Earth. The knot occasionally emits a burst of light, which is eventually detected on Earth. Two bursts are indicated in Fig. 37-29a, separated by timet as measured in a stationary frame near the bursts. The bursts are shown in Fig. 37-29b as if they were photographed on the same piece of film, first when light from burst 1 arrived on Earth and then later when light from burst 2 arrived. The apparent distanceD¯app traveled by the knot between the two bursts is the distance across an Earth-observer’s view of the knot’s path. The apparent timeT¯app between the bursts is the difference in the arrival times of the light from them. The apparent speed of the knot is then V¯app=D¯app/T¯app. In terms of v, t, andθ , what are (a)D¯app and (b)T¯app ? (c) EvaluateV¯app forv=0.980c and θ=30.0. When superluminal (faster than light) jets were first observed, they seemed to defy special relativity—at least until the correct geometry (Fig. 37-29a) was understood.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free