Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reference frameS'is to pass reference frame Sat speed valong the common direction of the x'and xaxes, as in Fig. 37-9. An observer who rides along with frame s'is to count off 25son his wristwatch. The corresponding time interval tis to be measured by an observer in frame s. Which of the curves in Fig. 37-15 best gives t(vertical axis of the graph) versus speed parameterβ?

Short Answer

Expert verified

The curveb is the best representation of the graph between tandβ .

Step by step solution

01

Write the given data from the question.

The speed of the reference frameS' is v.

The observer is sitting in the frame S'and count off 25son wristwatch.

02

Determine the formulas to find out the best gives the graph between the time interval and speed parameter.

The expression to calculate the time interval is given as follows.

t=t01-β …… (i)

Here, βis the speed parameter.

The expression to calculate the speed parameter is given as follows,

β=vc

Here,v is the relative speed of the frame S'with respect to frame Sandc is the speed of the light.

03

Find out the best gives the graph between the time interval and speed parameter.

Calculate the time interval,

Substitute25sfor t0into equation (i).

t=251-β2

Substitute vcforβinto above equation.

t=251-vc2

From the above, as the relative speed of frameS' is approaches to speed of the light, the value of speed parameterβ increases, and the value of1-β2 decreases which result to increases in value of time intervalt .

Hence the curve bis the best representation of the graph between tand β.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 37-16 shows a ship (attached to reference frame S') passing us (standing in reference frameS). A proton is fired at nearly the speed of light along the length of the ship, from the front to the rear. (a) Is the spatial separation x'between the point at which the proton is fired and the point at which it hits the ship’s rear wall a positive or negative quantity? (b) Is the temporal separation t'between those events a positive or negative quantity?

(a) What potential difference would accelerate an electron to speed c according to classical physics? (b) With this potential difference, what speed would the electron actually attain?

The car-in-the-garage problem. Carman has just purchased the world’s longest stretch limo, which has a proper length of Lc=30.5 m. In Fig. 37-32a, it is shown parked in front of a garage with a proper length of Lg=6.00 m. The garage has a front door (shown open) and a back door (shown closed).The limo is obviously longer than the garage. Still, Garageman, who owns the garage and knows something about relativistic length contraction, makes a bet with Carman that the limo can fit in the garage with both doors closed. Carman, who dropped his physics course before reaching special relativity, says such a thing, even in principle, is impossible.

To analyze Garageman’s scheme, an xc axis is attached to the limo, with xc=0 at the rear bumper, and an xg axis is attached to the garage, with xg=0 at the (now open) front door. Then Carman is to drive the limo directly toward the front door at a velocity of 0.9980c(which is, of course, both technically and financially impossible). Carman is stationary in the xcreference frame; Garageman is stationary in the role="math" localid="1663064422721" Xgreference frame.

There are two events to consider. Event 1: When the rear bumper clears the front door, the front door is closed. Let the time of this event be zero to both Carman and Garageman: tg1=tc1=0. The event occurs at xg=xc=0. Figure 37-32b shows event 1 according to the xg reference frame. Event 2: When the front bumper reaches the back door, that door opens. Figure 37-32c shows event 2 according to the xg reference frame.

According to Garageman, (a) what is the length of the limo, and what are the spacetime coordinates (b) xg2 and (c) tg2 of event 2? (d) For how long is the limo temporarily “trapped” inside the garage with both doors shut? Now consider the situation from the xc reference frame, in which the garage comes racing past the limo at a velocity of 0.9980c. According to Carman, (e) what is the length of the passing garage, what are the spacetime coordinates (f) Xc2and (g) tc2 of event 2, (h) is the limo ever in the garage with both doors shut, and (i) which event occurs first? (j) Sketch events 1 and 2 as seen by Carman. (k) Are the events causally related; that is, does one of them cause the other? (l) Finally, who wins the bet?

Question: In Module 28-4, we showed that a particle of charge and mass will move in a circle of radiusr=mv/|q|Bwhen its velocity is perpendicular to a uniform magnetic field . We also found that the period T of the motion is independent of speed v. These two results are approximately correct if v<<c . For relativistic speeds, we must use the correct equation for the radius:

r=p|q|B=γmv|q|B

(a) Using this equation and the definition of period (T=2Πr/v), find the correct expression for the period. (b) Is independent of v? If a 10.0 MeV electron moves in a circular path in a uniform magnetic field of magnitude 2.20T, what are (c) the radius according to Chapter 28, (d) the correct radius, (e) the period according to Chapter 28, and (f) the correct period?

An armada of spaceships that is 1.00 ly long (as measured in its rest frame) moves with speed 0.800c relative to a ground station in frame S.A messenger travels from the rear of the armada to the front with a speed of 0.950c relative to S. How long does the trip take as measured (a) in the rest frame of the messenger, (b) in the rest frame of the armada, and (c) by an observer in the ground frame S?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free