Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Certain wavelengths in the light from a galaxy in the constellation Virgo are observed to be 0.4% longer than the corresponding light from Earth sources. (a) What is the radial speed of this galaxy with respect to Earth? (b) Is the galaxy approaching or receding from Earth?

Short Answer

Expert verified

(a) The radial speed of galaxy relative to Earth is 1.2×106m/s.

(b) The galaxy is receding from Earth.

Step by step solution

01

Identification of given data

The percentage of wavelength greater than corresponding light from Earth sources is x=0.4%=0.004

The wavelength of the light shift toward increased wavelength if the source is moving away from the observer. If the wavelength shifts towards decreased wavelength then source moves toward observer.

02

Determination of radial speed of galaxy relative to Earth

(a)

The radial speed of galaxy relative to Earth is given as:

v=1+x2-11+x2+1c

Here, c is the speed of light and its value is 3×108m/s.

Substitute all the values in the above equation.

v=1+0.0042-11+0.0042+1c3×108m/scv=1.2×106m/s

Therefore, the radial speed of galaxy relative to Earth is 1.2×106m/s.

03

Identification of movement of Galaxy

(b)

As the wavelengths of the light are observed longer than corresponding wavelength on Earth so the light is shifting toward larger wavelength. The galaxy is moving away from the Earth so galaxy is receding from Earth.

Therefore, the galaxy is receding from Earth.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:A 5.00-grain aspirin tablet has a mass of 320 mg. For how many kilometers would the energy equivalent of this mass power an automobile? Assume 12.75 km/L and a heat of combustion of 3.65×107J/L for the gasoline used in the automobile.

An unstable high-energy particle enters a detector and leaves a track of length 1.05 mm before it decays. Its speed relative to the detector was 0.992c. What is its proper lifetime? That is, how long would the particle have lasted before decay had it been at rest with respect to the detector?

In a high-energy collision between a cosmic-ray particle and a particle near the top of Earth’s atmosphere, 120 km above sea level, a pion is created. The pion has a total energy E of 1.35×105MeVand is travelling vertically downward. In the pion’s rest frame, the pion decays 35.0 ns after its creation. At what altitude above sea level, as measured from Earth’s reference frame, does the decay occur? The rest energy of a pion is 139.6 MeV.

In Fig. 37-28a, particle P is to move parallel to thex andx' axes of reference framesSand S', at a certain velocity relative to frame S. FrameS' is to move parallel to thex axis of frame Sat velocity v. Figure 37-28b gives the velocityu' of the particle relative to frameS' for a range of values forv . The vertical axis scale is set byu'a=0.800c . What value will u'have if (a) v=0.80cand (b)vc ?

Superluminal jets. Figure 37-29a shows the path taken by a knot in a jet of ionized gas that has been expelled from a galaxy. The knot travels at constant velocity v at angleθ from the direction of Earth. The knot occasionally emits a burst of light, which is eventually detected on Earth. Two bursts are indicated in Fig. 37-29a, separated by timet as measured in a stationary frame near the bursts. The bursts are shown in Fig. 37-29b as if they were photographed on the same piece of film, first when light from burst 1 arrived on Earth and then later when light from burst 2 arrived. The apparent distanceD¯app traveled by the knot between the two bursts is the distance across an Earth-observer’s view of the knot’s path. The apparent timeT¯app between the bursts is the difference in the arrival times of the light from them. The apparent speed of the knot is then V¯app=D¯app/T¯app. In terms of v, t, andθ , what are (a)D¯app and (b)T¯app ? (c) EvaluateV¯app forv=0.980c and θ=30.0. When superluminal (faster than light) jets were first observed, they seemed to defy special relativity—at least until the correct geometry (Fig. 37-29a) was understood.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free