Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Stellar system Q1 moves away from us at a speed of 0.800c. Stellar system Q2, which lies in the same direction in space but is closer to us, moves away from us at speed 0.400c. What multiple of c gives the speed of Q2 as measured by an observer in the reference frame of Q1?

Short Answer

Expert verified

The multiple of c is 0.588.

Step by step solution

01

Describe the expression for the velocity of the particle

The relativistic velocity of the particle is given by,

u=u'+v1+u'vc …… (1)

Here, data-custom-editor="chemistry" u=0.400c is the velocity of stellar Q2 in reference frame, and data-custom-editor="chemistry" u=0.800c is the velocity of the reference frame of the observer on stellar Q1 relative to the reference frame.

02

Determine the multiple of c

Rearrange the equation (1) for u'.

u1+u'vc2=u'+vuu'vc-u'=v-uu'uvc2-1=v-uu'=v-uuvc2-1 …… (2)

Substitute 0.800c for v, and 0.400c for u in equation (2).

u'=0.800c-0.400c0.800c0.400cc2-1=0.400c0.32-1=-0.588c

Here, the negative sign indicates the opposite direction.

Therefore, the multiple of c is 0.588.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A rod lies parallel to the x axis of the reference frame S, moving along this axis at a speed of 0.630c. Its rest length is 1.70 m. What will be its measured length in frame S ?

In Fig. 37-26a, particle P is to move parallel to the x and x' axes of reference frames S and S' , at a certain velocity relative to frame S. Frame S'" width="9">x axis of frame S at velocity v. Figure 37-26b gives the velocity localid="1664359069513" u'of the particle relative to frame localid="1664359072841" S' for a range of values for v. The vertical axis scale is set by ua'=0.800c. What value willu' have if (a)v=0.90c and (b) vc?

Question: The mass of an electron is 9.10938188×10-31kg. To eight significant figures, find the following for the given electron kinetic energy: (a)localid="1663051516359" γand (b)βlocalid="1663053404383" βforK=1.0000000keV, (c)localid="1663051781874">γand (d)localid="1663051803695" βfor, K=1.0000000MeVand then (e)localid="1663051835448" γand (f)localid="1663051820843" βforK=1.0000000GeV.

If we intercept an electron having total energy of 1533 MeV that came from Vega, which is 26 ly from us, how far in light-years was the trip in the rest frame of the electron?

Figure 37-21 shows one of four star cruisers that are in a race. As each cruiser passes the starting line, a shuttle craft leaves the cruiser and races toward the finish line. You, judging the race, are stationary relative to the starting and finish lines. The speeds vc of the cruisers relative to you and the speeds of the shuttle craft relative to their respective starships are, in that order, (1) 0.70c, 0.40c; (2) 0.40c, 0.70c; (3) 0.20c, 0.90c; (4) 0.50c, 0.60c. (a) Rank the shuttle craft according to their speeds relative to you, greatest first. (b) Rank the shuttle craft according to the distances their pilots measure from the starting line to the finish line, greatest first. (c) Each starship sends a signal to its shuttle craft at a certain frequency f0 as measured on board the starship. Rank the shuttle craft according to the frequencies they detect, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free