Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A swimmer moves through the water at an average speed of 0.22 m/s. The average drag force is 110 N. What average power is required of the swimmer?

Short Answer

Expert verified

Average power required of the swimmer is 24 W .

Step by step solution

01

Given data:

An average speed of the swimmer through the water, v = 0.22 m/s

Average drag force on the swimmer, F = 110 N

02

To understand the concept:

Using the formula between power, force, and velocity, you can find an average power required of the swimmer.

Formula:

P = Fv

Here, P is the average power, F is the average drag force, and v is the average speed.

03

Calculate the average power required of the swimmer:

The average power required of the swimmer is,

P = Fv

Since the direction of the force and velocity is the same, Power is,

P=(110N)(0.22m/s)=24.2W24W

Hence, an average power required of the swimmer is 24 W .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 8-21, a small, initially stationary block is released on a frictionless ramp at a height of 3.0 m. Hill heights along the ramp are as shown in the figure. The hills have identical circular tops, and the block does not fly off any hill. (a) Which hill is the first the block cannot cross? (b) What does the block do after failing to cross that hill? Of the hills that the block can cross, on which hill-top is (c) the centripetal acceleration of the block greatest and (d) the normal force on the block least?

Figure 8-73a shows a molecule consisting of two atoms of masses mand m(withmM) and separation r. Figure 8-73b shows the potential energy U(r)of the molecule as a function of r. Describe the motion of the atoms (a) if the total mechanical energy Eof the two-atom system is greater than zero (as isE1), and (b) if Eis less than zero (as isE2). For E1=1×10-19Jand r=0.3nm, find (c) the potential energy of the system, (d) the total kinetic energy of the atoms, and (e) the force (magnitude and direction) acting on each atom. For what values of ris the force (f) repulsive, (g) attractive, and (h) zero?

A cookie jar is moving up an 40°incline. At a point 55 cm from the bottom of the incline (measured along the incline), the jar has a speed of 1.4 m/s . The coefficient of kinetic friction between jar and incline is 0.15 . (a) How much farther up the incline will the jar move? (b) How fast will it be going when it has slid back to the bottom of the incline? (c) Do the answers to (a) and (b) increase, decrease, or remain the same if we decrease the coefficient of kinetic friction (but do not change the given speed or location)?

In Problem 2, what is the speed of the car at (a) point A, (b) point B(c) point C?(d) How high will the car go on the last hill, which is too high for it to cross? (e) If we substitute a second car with twice the mass, what then are the answers to (a) through and (d)?

Figure 8-26 shows three situations involving a plane that is not frictionless and a block sliding along the plane. The block begins with the same speed in all three situations and slides until the kinetic frictional force has stopped it. Rank the situations according to the increase in thermal energy due to the sliding, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free