Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The luxury liner Queen Elizabeth 2 has a diesel-electric power plant with a maximum power of92 MWat a cruising speed of 32.5 knots. What forward force is exerted on the ship at this speed?(1 knot = 1.852 km / h).

Short Answer

Expert verified

The forward force exerted on the ship at speed.

Step by step solution

01

Given data:

Maximum power of the diesel power plant,P=92MW=92×106W

The velocity of the ship, v = 32.5 knot

02

To understand the concept:

Convert the velocity of the ship in meters per second using conversion factors. Then using the relation between power, force, and velocity, find the applied force on the ship.

Formula:

P = Fv

03

Calculate the forward force exerted on the ship at a speed of 32.5 knots :

The velocity of the ship is,

v=32.5×1.852×518=16.71m/s

The maximum power of the ship is defined as below.

P=FvF=Pv

Substitute known values in the above equation.

F=92.106W16.71m/s=5.5×106N

Hence, the forward force exerted on the ship at speed 32.5 knot is 5.5×106N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 8-23a, you pull upward on a rope that is attached to a cylinder on a vertical rod. Because the cylinder fits tightly on the rod, the cylinder slides along the rod with considerable friction. Your force does work W=+100Jon the cylinder–rod–Earth system (Fig. 8-23b).An “energy statement” for the system is shown in Fig. 8-23c: the kinetic energy K increases by 50J, and the gravitational potential energy Ugincreases by 20 J. The only other change in energy within the system is for the thermal energyEth.What is the change ΔEth?

A boy is initially seated on the top of a hemispherical ice mound of radius R = 13.8 m. He begins to slide down the ice, with a negligible initial speed (Figure). Approximate the ice as being frictionless. At what height does the boy lose contact with the ice?

The surface of the continental United States has an area of about8×106km2and an average elevation of about 500 m(above sea level). The average yearly rainfall is 75 cm. The fraction of this rainwater that returns to the atmosphere by evaporation is23; the rest eventually flows into the ocean. If the decrease in gravitational potential energy of the water–Earth system associated with that flow could be fully converted to electrical energy, what would be the average power? (The mass of1m3of water is 1000 kg.)

A 1.50kg snowball is fired from a cliff12.5m high. The snowball’s initial velocity is14.0m/s , directed 41.0°above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system during the flight? (c) If that gravitational potential energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?

(a) In Problem 5, what is the speed of the flake when it reaches the bottom of the bowl? (b) If we substituted a second flake with twice the mass, what would its speed be? (c) If, instead, we gave the flake an initial downward speed along the bowl, would the answer to (a) increase, decrease, or remain the same?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free