Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 8-23a, you pull upward on a rope that is attached to a cylinder on a vertical rod. Because the cylinder fits tightly on the rod, the cylinder slides along the rod with considerable friction. Your force does work W=+100Jon the cylinder–rod–Earth system (Fig. 8-23b).An “energy statement” for the system is shown in Fig. 8-23c: the kinetic energy K increases by 50J, and the gravitational potential energy Ugincreases by 20 J. The only other change in energy within the system is for the thermal energyEth.What is the change ΔEth?

Short Answer

Expert verified

The change in ΔEthis30J

Step by step solution

01

Given information

  • Work on the cylinder-rod-earth system isW=+100J .
  • The gravitational potential energy increase is,ΔPE=20J.
  • The kinetic energy increase is, ΔKE=50J.
02

To understand the concept

Here the relation between work done and energy can be used to find change in thermal energy. It is known that the energy can neither be created nor be destroyed but it gets transformed into some other form. In this case that is termed as work done. Here the concept of work done on the system due to all energies - potential energy, kinetic energy, and thermal energy can be used.

Formula:

The work done is given by,

W=ΔKE+ΔPE+ΔEth

03

To find the change in ∆Eth

We have

W=ΔKE+ΔPE+ΔEth

As given the work, kinetic and potential energy put in the above equation. we get,

100J=50J+20J+ΔEthΔEth=+100J-50J-20JΔEth=+30J

Therefore, the changeΔEth is30J .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You push a 2.0 kg block against a horizontal spring, compressing the spring by 15 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 75 cm from where you released it. The spring constant is 200N/m. What is the block-table coefficient of kinetic friction?

In Fig. 8-38, the string is L=120 cmlong, has a ball attached to one end, and is fixed at its other end. A fixed peg is at pointP. Released from rest, the ball swings down until the string catches on the peg; then the ball swings up, around the peg. If the ball is to swing completely around the peg, what value must distancedexceed? (Hint: The ball must still be moving at the top of its swing. Do you see why?)

In Figure, a chain is held on a frictionless table with one fourth of its length hanging over the edge. If the chain has lengthL = 28 cmand mass m = 0.012 kg, how much work is required to pull the hanging part back onto the table?

The summit of Mount Everest is 8850 mabove sea level. (a) How much energy would a 90 kgclimber expand against the gravitational force on him in climbing to the summit from sea level? (b) How many candy bars, at 1.25 MJper bar, would supply an energy equivalent to this? Your answer should suggest that work done against the gravitational force is a very small part of the energy expended in climbing a mountain.

Figure 8-73a shows a molecule consisting of two atoms of masses mand m(withmM) and separation r. Figure 8-73b shows the potential energy U(r)of the molecule as a function of r. Describe the motion of the atoms (a) if the total mechanical energy Eof the two-atom system is greater than zero (as isE1), and (b) if Eis less than zero (as isE2). For E1=1×10-19Jand r=0.3nm, find (c) the potential energy of the system, (d) the total kinetic energy of the atoms, and (e) the force (magnitude and direction) acting on each atom. For what values of ris the force (f) repulsive, (g) attractive, and (h) zero?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free