Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 8-32, a ice flake is released from the edge of a hemisphere bowl whose radius ris 22.0 cm. The flake-bowl contact is frictionless. (a) How much work is done on the flake by the gravitational force during the flake’s descent to the bottom of the bowl? (b) What is the change in the potential energy of the flake-Earth system during that descent? (c) If that potential energy is taken to be zero at the bottom of the bowl, what is its value when the flake is released? (d) If, instead, the potential energy is taken to be zero at the release point, what is its value when the flake reaches the bottom of the bowl? (e) If the mass of the flake were doubled, would the magnitudes of the answers to (a) through (b) increase, decrease, or remain the same?

Short Answer

Expert verified

a) Work is done on the flake by the gravitational force during the flake’s descent to the bottom of the bowl is 4.31×103 J

b) Change in the potential energy of the flake–Earth system during that descent is 4.31×103 J

c) If that potential energy is taken to be zero at the bottom of the bowl, then value when the flake is released is 4.31×103 J

d) If, instead, the potential taken to be zero at the release point, then value when the flake reaches the bottom of the bowl is 4.31×103 J

e) The mass is directly proportional to potential energy as well as work so, if mass is doubled then all answer will be doubled.

Step by step solution

01

Given

i) Mass of ice flakem=2 g=2×103 kg

ii) hemispherical bowl radius r=22 cm=22×102 m

iii) Gravitational acceleration g=9.8 m/s2

02

To understand the concept

The force of gravity is constant, so the work done can be found by using the formula for the work done in terms of gravitational force and displacement.

Formula:

Gravitational potential energy is given by formulaWg=mgh

03

(a) Calculate how much work is done on the flake by the gravitational force during the flake’s descent to the bottom of the bowl

W=mgh, hereh=r

Change in potential energyΔU=Wg

Theforce is vertically downward and has magnitude mg, where mis the mass of the flake, so this reduces to W=mgh where h is the height from which the flake falls. This is equal to the radius r of the bowl.

Wg=mgr

Substitute all the value in the above equation.

Wg=2×103 kg×9.80 m/s2×22×102 mWg=4.31×103 J

Hence thework is done on the flake by the gravitational force during the flake’s descent to the bottom of the bowl is 4.31×103 J

04

(b) Calculate the change in the potential energy of the flake-Earth system during that descent 

The force of gravity is conservative, so the change in gravitational potential energy of the Flake-Earth system is the negative of the work done

ΔU=Wg

ΔU=mgh=mgr

Substitute all the value in the above equation.

ΔU=2×103 kg×9.80 m/s2×22×102 mΔU=4.31×103 J

Hence the change in the potential energy of the flake–Earth system during that descent is 4.31×103 J

05

(c) Calculate the value of potential energy when the flake is released if potential energy is taken to be zero at the bottom of the bowl

Thepotential energy when the flake is at the top is greater than when it is at the bottom.

Therefore,
ΔU=UtopUbottom

ΔU=mgr0ΔU=mgr

Substitute all the value in the above equation.

ΔU=2×103 kg×9.80 m/s2×22×102 mΔU=4.31×103 J

Hence if that potential energy is taken to be zero at the bottom of the bowl, then value when the flake is released is 4.31×103 J

06

(d) Calculate the potential energy when the flake reaches the bottom of the bowlif the potential energy is taken to be zero at the release point

IfU= 0 at the top,thepotential energy when the flake is at the bottom is less than when it is at the top,

Therefore,

ΔU=UtopUbottomΔU=0mgrΔU=mgr

Substitute all the value in the above equation.

ΔU=2×103 kg×9.80 m/s2×22×102 mΔU=4.31×103 J

Hence if, instead, the potential taken to be zero at the release point, then value when the flake reaches the bottom of the bowl is 4.31×103 J

07

(e) Figure out if the magnitudes of the answers to (a) through (b) increase, decrease, or remain the same if the mass of the flake were doubled, would

The mass is directly proportional to potential energy as well as work so, if mass is doubled then all answer will be doubled.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig.8.52, a 3.5 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring’s relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk=0.25.The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block–floor system (b) the maximum kinetic energy of the block, and (c) the original compression distance of the spring?


A sprinter who weighs670 Nruns the first 7.0 mof a race in1.6 s, starting from rest and accelerating uniformly. What are the sprinter’s

  1. Speed and
  2. Kinetic energy at the end of the1.6 s?
  3. What average power does the sprinter generate during the1.6 sinterval?

If a 70 kgbaseball player steals home by sliding into the plate with an initial speed of 10 m/sjust as he hits the ground, (a) what is the decrease in the player’s kinetic energy and (b) what is the increase in the thermal energy of his body and the ground along which he slides?

In Figure, a block of mass m=12kgis released from rest on a frictionless incline of angle 30°. Below the block is a spring that can be compressed 2.0 cmby a force of 270 N . The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block just as it touches the spring?

In Fig. 8-51, a block is sent sliding down a frictionless ramp. Its speeds at points A and B are2.00msand2.60ms, respectively. Next, it is again sent sliding down the ramp, but this time its speed at point A is4.00ms. What then is its speed at point B?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free