Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the spring constant of a spring that stores25 Jof elastic potential energy when compressed by7.5 cm?

Short Answer

Expert verified

Spring constant is,k=8.9×103 N/m .

Step by step solution

01

Given

Elastic potential energyU=25 J

Compressed lengthx=7.5 cm=7.5×102 m .

02

To understand the concept 

The problem is based on the concept of elastic potential energy. It is energy stored as a result of applying a force to deform an elastic object. By using the concept of elastic potential energy, we can find the spring constant.

Formula:

U=12kx2

03

Calculate the spring constant of the spring 

Elastic potential energy can be written as

U=12kx2k=2Ux2

Substitute all the value in the above equation.

k=2×25 J(7.5×102 m)2k=8.9×103 N/m

Hence the spring constant is, k=8.9×103 N/m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder–rod–Earth system, similar to that shown in Fig. 8-23b. Your work on the system is 200J.The system does work of 60Jon the block. Within the system, the kinetic energy increases by 130Jand the gravitational potential energy decreases by 20 J. (a) Draw an “energy statement” for the system, as in Fig. 8-23c. (b) What is the change in the thermal energy within the system?

A 60 kg skier leaves the end of a ski-jump ramp with a velocity of 24 m/s directed 25°above the horizontal. Suppose that as a result of air drag the skier returns to the ground with a speed of 22 m/s, landing 14 m vertically below the end of the ramp. From the launch to the return to the ground, by how much is the mechanical energy of the skier-Earth system reduced because of air drag?

A conservative force F=(6.0x-12)i^Nwhere xis in meters, acts on a particle moving along an xaxis. The potential energy Uassociated with this force is assigned a value of 27J at x=0. (a) Write an expression for Uas a function of x, with Uin joules and xin meters. (b) what is the maximum positive potential energy? At what (c) negative value (d) positive value of xis the potential energy equal to zero?

A 75 gFrisbee is thrown from a point 1.1 mabove the ground with a speed of 12 m/s.When it has reached a height of 2.1 m, its speed is 10.5 m/s. What was the reduction in Emec of the Frisbee-Earth system because of air drag?

In Fig. 8-60, the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.0 kg, block B has a mass of 2.0 kg, and angle θis 30°. If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block B has fallen 25 cm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free