Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Conservative force F(x)acts on a particle that moves along an x axis. Figure 8-72 shows how the potential energy U(x)associated with force F(x)varies with the position of the particle, (a) Plot F(x)for the range 0<x<6m. (b) The mechanical energy Eof the system is 4.0J. Plot the kinetic energy localid="1661232921223" K(x)of the particle directly on Fig. 8-72.

Short Answer

Expert verified

a) Fxfor the range 0<x<6mis plotted.

b) Kinetic energy Kxof the particle on the given figure is plotted.

Step by step solution

01

The given data

a) Range of the distance, 0<x<6m

b) Graph for Uxagainst x is given.

c) Mechanical energy of the system, E =4J

02

Understanding the concept of energy and force

We can find the forces at different x associated with P.E of the particle by taking the slope of the tangents at different values of x. From this, we can easily plot F(x) vs. x. Then using the law of conservation of energy, we can find the values of K.E at different x and then plot the K.E of the particle.

Formulae:

The force of a body due to potential energy,Fx=-dUdx (i)

Applying law of conservation, E=constant(ii)

03

a) Calculation for plotting the force versus distance graph

Using equation (i), we can find force at different x by taking slope of the graph Uxvs.x at corresponding x. Using this, we can plot the graph of F(x) vs x. as below.

Hence, the required graph for force is plotted.

04

b) Calculation for plotting the potential energy versus distance graph

According to the law of conservation of energy, mechanical energy, which is the sum of P.E and K.E, should be constant and is equal to 4J. From this, we can plot the K.E of the particle as follows:

Hence, the required graph for potential energy is plotted.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The maximum force you can exert on an object with one of your back teeth is about 750 N. Suppose that as you gradually bite on a clump of licorice, the licorice resists compression by one of your teeth by acting like a spring for which k=2.5×105N/m. Find (a) the distance the licorice is compressed by your tooth and (b) the work the tooth does on the licorice during the compression. (c) Plot the magnitude of your force versus the compression distance. (d) If there is a potential energy associated with this compression, plot it versus compression distance. In the 1990s the pelvis of a particular Triceratops dinosaur was found to have deep bite marks. The shape of the marks suggested that they were made by a Tyrannosaurus rex dinosaur. To test the idea, researchers made a replica of a T. rex tooth from bronze and aluminum and then used a hydraulic press to gradually drive the replica into cow bone to the depth seen in the Triceratops bone. A graph of the force required versus depth of penetration is given in Fig. 8-71 for one trial; the required force increased with depth because, as the nearly conical tooth penetrated the bone, more of the tooth came in contact with the bone. (e) How much work was done by the hydraulic press—and thus presumably by the T. rex—in such a penetration? (f) Is there a potential energy associated with this penetration? (The large biting force and energy expenditure attributed to the T. rex by this research suggest that the animal was a predator and not a scavenger.)

In Fig.8.51, a block slides down an incline. As it moves from point Ato point B, which are 5.0 m apart, force F acts on the block, with magnitude 2.0 N and directed down the incline. The magnitude of the frictional force acting on the block is 10 N . If the kinetic energy of the block increases by 35 J between Aand B, how much work is done on the block by the gravitational force as the block moves from Ato B?

In Fig. 8-23a, you pull upward on a rope that is attached to a cylinder on a vertical rod. Because the cylinder fits tightly on the rod, the cylinder slides along the rod with considerable friction. Your force does work W=+100Jon the cylinder–rod–Earth system (Fig. 8-23b).An “energy statement” for the system is shown in Fig. 8-23c: the kinetic energy K increases by 50J, and the gravitational potential energy Ugincreases by 20 J. The only other change in energy within the system is for the thermal energyEth.What is the change ΔEth?

During a rockslide, a 520 kgrock slides from rest down a hillside that islong and 300 mhigh. The coefficient of kinetic friction between the rock and the hill surface is 0.25. (a) If the gravitational potential energy Uof the rock–Earth system is zero at the bottom of the hill, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the kinetic energy of the rock as it reaches the bottom of the hill? (d) What is its speed then?

In 1981, Daniel Goodwin climbed 443 m up the exteriorof the Sears Building in Chicago using suction cups and metal clips.

  1. Approximate his mass and then compute how much energy he had to transfer from biomechanical (internal) energy to the gravitational potential energy of the Earth-Goodwin system to lift himself to that height.
  2. How much energy would he have had to transfer if he had, instead, taken the stairs inside the building (to the same height)?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free