Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A1.50 kgsnowball is shot upward at an angle of34.0°to the horizontal with an initial speed of20.0 m/s.

  1. What is its initial kinetic energy?
  2. By how much does the gravitational potential energy of the snowball–Earth system change as the snowball moves from the launch point to the point of maximum height?
  3. What is that maximum height?

Short Answer

Expert verified
  1. The initial kinetic energy is 300 J.
  2. The gravitational potential energy at maximum height is 93.8 J.
  1. The maximum height is 6.38 m.

Step by step solution

01

Given data:

The mass of the snowball, m=1.50 kg

The angle of inclination,θ=34°

The horizontal speed, v=20 m/s

02

To understand the concept

Here we have to use the basic formula for kinetic energy, which is half of product of mass and square of velocity. Then use conservation of energy to find the gravitational energy.

Formula:

KE=12mv2

03

(a) The initial kinetic energy:

Initial kinetic energy is calculated as follows:

KE=12mv2=12×1.50kg×20m/s2=300J

Hence, the initial kinetic energy is 300 J.

04

(b) Change in gravitational potential energy:

Calculateby how much does the gravitational potential energy of the snowball–Earth system change.

The ball is going up, which works against gravity.

So, the change in gravitational potential energyis a changein kinetic energy.

Ug=Ki-Kf=300J-12×1.5×20cos34°m/s2=300J-0.75×20×0.8292J=300J-206.2JUg=93.8J

Hence, the gravitational potential energy at maximum height is 93.8 J.

05

(c) The maximum height:

The change in potential energy is define by usg following formula.

Ug=mgh

Here, g is the gravity having a value 9.8m/s2, m is the mass, and h is the maximum height.

Rearrange the above equation for height as below.

h=Uggm

Substitute known values in the above equation.

h=93.8J9.8m/s2×1.5kg=6.38m

Hence, the maximum height is 6.38 m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An outfielder throws a baseball with an initial speed of 81.8 mi/h. Just before an infielder catches the ball at the same level, the ball’s speed is 110 ft/s. In foot-pounds, by how much is the mechanical energy of the ball–Earth system reduced because of air drag? (The weight of a baseball is 9.0 oz)

When a click beetle is upside down on its back, it jumps upward by suddenly arching its back, transferring energy stored in a muscle to mechanical energy. This launching mechanism produces an audible click, giving the beetle its name. Videotape of a certain click-beetle jump shows that a beetle of mass m=4.0×10-6kgmoved directly upward by 0.77 mm during the launch and then to a maximum heighth = 0.30 m. During the launch, what are the average magnitudes of (a) the external force on the beetles back from the floor and (b) the acceleration of the beetle in terms of g?

Conservative force F(x)acts on a particle that moves along an x axis. Figure 8-72 shows how the potential energy U(x)associated with force F(x)varies with the position of the particle, (a) Plot F(x)for the range 0<x<6m. (b) The mechanical energy Eof the system is 4.0J. Plot the kinetic energy localid="1661232921223" K(x)of the particle directly on Fig. 8-72.

In Fig. 8-25, a block slides along a track that descends through distance h. The track is frictionless except for the lower section. There the block slides to a stop in a certain distance Dbecause of friction. (a) If we decrease h, will the block now slide to a stop in a distance that is greater than, less than, or equal to D? (b) If, instead, we increase the mass of the block, will the stopping distance now be greater than, less than, or equal to D?

The maximum force you can exert on an object with one of your back teeth is about 750 N. Suppose that as you gradually bite on a clump of licorice, the licorice resists compression by one of your teeth by acting like a spring for which k=2.5×105N/m. Find (a) the distance the licorice is compressed by your tooth and (b) the work the tooth does on the licorice during the compression. (c) Plot the magnitude of your force versus the compression distance. (d) If there is a potential energy associated with this compression, plot it versus compression distance. In the 1990s the pelvis of a particular Triceratops dinosaur was found to have deep bite marks. The shape of the marks suggested that they were made by a Tyrannosaurus rex dinosaur. To test the idea, researchers made a replica of a T. rex tooth from bronze and aluminum and then used a hydraulic press to gradually drive the replica into cow bone to the depth seen in the Triceratops bone. A graph of the force required versus depth of penetration is given in Fig. 8-71 for one trial; the required force increased with depth because, as the nearly conical tooth penetrated the bone, more of the tooth came in contact with the bone. (e) How much work was done by the hydraulic press—and thus presumably by the T. rex—in such a penetration? (f) Is there a potential energy associated with this penetration? (The large biting force and energy expenditure attributed to the T. rex by this research suggest that the animal was a predator and not a scavenger.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free