Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In 1981, Daniel Goodwin climbed 443 m up the exteriorof the Sears Building in Chicago using suction cups and metal clips.

  1. Approximate his mass and then compute how much energy he had to transfer from biomechanical (internal) energy to the gravitational potential energy of the Earth-Goodwin system to lift himself to that height.
  2. How much energy would he have had to transfer if he had, instead, taken the stairs inside the building (to the same height)?

Short Answer

Expert verified
  1. to be transferred from internal energy to Gravitational potential energy of the Earth-Goodwin system is2.8×105J.
  2. Energy to be transferred if stairs are taken is 2.8×105J.

Step by step solution

01

Given data:

Height climbed, h = 443 m

02

To understand the concept:

Gravitational potential energy of a system depends on the position of the object from the earth’s surface.

Formula:

The change in potential energy is define by using following formula.

U=mgh
Here, m is the mass, g is the acceleration due to gravity having a value 9.8 m/s2, and h is the height.

03

Compute the amount of energy he had to transfer:

Let the mass of man is,

m = 65 kg

He needs to transfer an amount of energy from his internal energy to Gravitational potential energy of the Earth-Goodwin system. This transferred energy is equal to the increase in his gravitational potential energy U.

U=mgh=65kg×9.8m/s2×443m=2.8×105J

04

Step 4: How much energy would have had to be transferred if he had, instead, taken the stairs inside the building:

If stairs are taken inside the building but at the same height, he still must overcome the increase in his gravitational potential energy. So, this will be the same as 2.8×105J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 8-34 shows a thin rod, of length L=2.00m and negligible mass, that can pivot about one end to rotate in a vertical circle. A ball of mass m=5.00kg is attached to the other end. The rod is pulled aside to angleθ0=30.0° and released with initial velocity v0=0. As the ball descends to its lowest point, (a) how much work does the gravitational force do on it and (b) what is the change in the gravitational potential energy of the ball–Earth system? (c) If the gravitational potential energy is taken to be zero at the lowest point, what is its value just as the ball is released? (d) Do the magnitudes of the answers to (a) through (c) increase, decrease, or remain the same if angleθ0 is increased?

The only force acting on a particle is conservative force F. If the particle is at point A, the potential energy of the system associated with Fand the particle is 40 J. If the particle moves from point A to point B, the work done on the particle Fby is +25 J . What is the potential energy of the system with the particle at B?

In Fig. 8-21, a small, initially stationary block is released on a frictionless ramp at a height of 3.0 m. Hill heights along the ramp are as shown in the figure. The hills have identical circular tops, and the block does not fly off any hill. (a) Which hill is the first the block cannot cross? (b) What does the block do after failing to cross that hill? Of the hills that the block can cross, on which hill-top is (c) the centripetal acceleration of the block greatest and (d) the normal force on the block least?

The spring in the muzzle of a child’s spring gun has a spring constant of 700 N/m. To shoot a ball from the gun, first, the spring is compressed and then the ball is placed on it. The gun’s trigger then releases the spring, which pushes the ball through the muzzle. The ball leaves the spring just as it leaves the outer end of the muzzle. When the gun is inclined upward by 30oto the horizontal, a 57 gball is shot to a maximum height of 1.83 mabove the gun’s muzzle. Assume air drag on the ball is negligible. (a) At what speed does the spring launch the ball? (b) Assuming that friction on the ball within the gun can be neglected, find the spring’s initial compression distance.

A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 400 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 Jas it passes through the spring’s equilibrium position. As the cookie slides, a frictional force of magnitude 10.0 Nacts on it. (a) How far will the cookie slide from the equilibrium position before coming momentarily to rest? (b) What will be the kinetic energy of the cookie as it slides back through the equilibrium position?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free