Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A helium–neon laser emits red light at wavelength λ=633nmin a beam of diameter 3.5 mm and at an energy-emission rate of 5.0 mW. A detector in the beam’s path totally absorbs the beam. At what rate per unit area does the detector absorb photons?

Short Answer

Expert verified

The rate of absorption of photon per unit area is1.7×1021photons/m2.s

Step by step solution

01

Describe the expression of energy of the photon

The energy Eof a photon of wavelengthλ is given by,

E=hcλ

Here, h is the Planck’s constant, and c is the speed of light.

02

Determine the rate of absorption of photon per unit area 

Assume that the protons are emitted by a rate R from the sodium lamp. Then, the power P of the sodium lamp is equal to the product of rate R and the energy of each photon E.

P=REP=RhcλR=pλhc…… (1)

Divide the rate R by area of the beam.

RA=Pλhc×π4d2=4Pλπd2hc…… (2)

Therefore, the rate of absorption of photon per unit area is1.7×1021photons/m2.s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a collision between an x-ray photon of initial energy 50.0keVand an electron at rest, in which the photon is scattered backward and the electron is knocked forward.

(a) What is the energy of the backscattered photon?

(b) What is the kinetic energy of the electron?

Question:The uncertainty in the position of an electron along an xaxis

is given as 50pm, which is about equal to the radius of a hydrogen

atom. What is the least uncertainty in any simultaneous measurement

of the momentum component of this electron?

(a) If you double the kinetic energy of a nonrelativistic particle, how does its de Broglie wavelength change? (b) What if you double the speed of the particle?

Light strikes a sodium surface, causing photoelectric emission. The stopping potential for the ejected electrons is 50 V, and the work function of sodium is 2.2 eV. What is the wavelength of the incident light?

Question: In Eq. keep both terms, putting A=B=ψ. The

equation then describes the superposition of two matter waves of

equal amplitude, traveling in opposite directions. (Recall that this

is the condition for a standing wave.) (a) Show that |x,t|2 is

then given by |(x,t)|2=2ψ02[1+cos2kx]

(b) Plot this function, and demonstrate that it describes the square

of the amplitude of a standing matter wave. (c) Show that thenodes of this standing wave are located at x=(2n+1)(14λ),where n=0,1,2,3,

and λ is the de Broglie wavelength of the particle. (d) Write a similar

expression for the most probable locations of the particle.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free