Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 15-26shows three physical pendulums consisting of identical uniform spheres of the same mass that are rigidly connected by identical rods of negligible mass. Each pendulum is vertical and can pivot about suspension point O. Rank the pendulums according to their period of oscillation, greatest first.

Short Answer

Expert verified

The ranking of pendulums according to period of oscillation is Tb>Tc>Ta.

Step by step solution

01

The given data 

The figure for the three pendulums is given.

02

Understanding the concept of SHM of a particle

We can predict the period of the pendulum B from torques acting on it. Then comparing arm lengths of A and C we can rank them according to their periods.

Formula:

The period of an oscillation of a pendulum, T=2πLg (i)

03

Calculation of the ranking of pendulums according to period of oscillation

Let’s denote pendulums in the given figure as A, B and C respectively from left to right.

Since equal torques is acting on both the sides of pendulum B, it will have infinite period of oscillation. So, from equation (i), we say that it will havethegreatest period amongst the three.

The time period of pendulum is directly proportional to its arm length. The pendulum C has greater arm length than that of the other pendulums.

Thus, the time period for pendulum C is greater than that for pendulum A.

Hence, we can rank the pendulums as Tb>Tc>Ta.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A simple harmonic oscillator consists of a 0.50 kgblock attached to a spring. The block slides back and forth along a straight line on a frictionless surface with equilibrium point x=0. At t=0the block is at x=0and moving in the positive x direction. A graph of the magnitude of the net forceFon the block as a function of its position is shown in Fig. 15-55. The vertical scale is set by FS=75.0N. What are (a) the amplitude and (b) the period of the motion, (c) the magnitude of the maximum acceleration, and (d) the maximum kinetic energy?

Question: A0.12 kgbody undergoes simple harmonic motion of amplitude 8.5 cmand period20 s.

  1. What is the magnitude of the maximum force acting on it?
  2. If the oscillations are produced by a spring, what is the spring constant?

A block sliding on a horizontal frictionless surface is attached to a horizontal spring with a spring constant of 600N/m. The block executes SHM about its equilibrium position with a period of0.40sand an amplitude of0.20m. As the block slides through its equilibrium position, a role="math" localid="1657256547962" 0.50kgputty wad is dropped vertically onto the block. If the putty wad sticks to the block, determine (a) the new period of the motion and (b) the new amplitude of the motion.

A 1000 kgcar carrying four82kgpeople travel over a “washboard” dirt road with corrugations" width="9">4.0mapart. The car bounces with maximum amplitude when its speed is 16 km/h. When the car stops, and the people get out, by how much does the car body rise on its suspension?

A damped harmonic oscillator consists of a block (m=2.00kg), a spring (k=10.0N/m), and a damping force (F=-bv). Initially, it oscillates with amplitude of25.0cm; because of the damping, the amplitude falls to three-fourths of this initial value at the completion of four oscillations. (a) What is the value of b? (b) How much energy has been “lost” during these four oscillations?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free