Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 4.00kgblock hangs from a spring, extending it 16.0 cmfrom its unstretched position.

  1. What is the spring constant?
  2. The block is removed, and a0.500kgbody is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation?

Short Answer

Expert verified
  1. The value of the spring constant is 245N/m
  2. The period of oscillation of spring is0.284s.

Step by step solution

01

The given data

  • Mass of the block is,M=4.00kg.
  • Displacement of the spring is,role="math" localid="1657262737853" x=16.0cmor0.16m.
  • Mass of the body is, m=500kg.
02

Understanding the concept of Hooke’s law and the period of oscillations

Using Hooke’s law, we can find the value of the spring constant. Then using the formula for the period of oscillation for S.H.M we can find the period of oscillation of spring.

Formulae:

The force of a body usingHooke’s law,F=kx (i)

The period of oscillation, T=2πmk (ii)

03

a) Calculation for the spring constant

Using equation (i) to the given system, we get the spring constant of an oscillation as:

k=mgx(F=kx=Mg)=4kg9.8m/s20.16m=245N/m

Therefore, the value of the spring constant is245N/m

04

b) Calculation of period of oscillations

Using equation (ii), the period of oscillations of the system is given as:

T=2(3.142)0.5kg245N·m=0.284s

Therefore, the period of oscillation of spring is0.284s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 15-64, ademolition ball swings from the end of a crane. The length of the swinging segment of cable is 17. (a) Find the period of the swinging, assuming that the system can be treated as a simple pendulum. (b) Does the period depend on the ball’s mass?

A simple harmonic oscillator consists of a 0.80kgblock attached to a spring (k=200N/m). The block slides on a horizontal frictionless surface about the equilibrium pointx=0with a total mechanical energy ofrole="math" localid="1657274001354" 4.0J. (a) What is the amplitude of the oscillation? (b) How many oscillations does the block complete inrole="math" localid="1657273942909" 10s? (c) What is the maximum kinetic energy attained by the block? (d) What is the speed of the block atx=0.15m?

In Figure 15-37, two blocks(m=1.8kgandM=10kg)(and) and a spring (k=200 N/m) are arranged on a horizontal, frictionless surface. The coefficient of static friction between the two blocks is 0.40.What amplitude of simple harmonic motion of the spring–blocks system puts the smaller block on the verge of slipping over the larger block?

A 2.0 kg block is attached to the end of a spring with a spring constant of 350 N/m and forced to oscillate by an applied force F(15N)sin(ωdt), where ωd=35rad/s. The damping constant is b=15kg/s.Att=0, the block is at rest with the spring at its rest length. (a) Use numerical integration to plot the displacement of the block for the first 1.0 s. Use the motion near the end of the 1.0 sinterval to estimate the amplitude, period, and angular frequency. Repeat the calculation for (b)ωd=KMand (c)ωd=20rad/s.

You are to build the oscillation transfer device shown in Fig.15-27. It consists of two spring–block systems hanging from a flexible rod. When the spring of system is stretched and then released, the resulting SHM of system at frequency oscillates the rod. The rod then exerts a driving force on system 2, at the same frequency f1. You can choose from four springs with spring constants k of 1600,1500,1400, and 1200 N/m, and four blocks with masses m of 800,500,400, and 200 kg. Mentally determine which spring should go with which block in each of the two systems to maximize the amplitude of oscillations in system 2.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free