Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the phase constant for the harmonic oscillator with the position functionx(t)given in Figure if the position function has the formx=xmcos(ωt+f)? The vertical axis scale is set byxm=6.0cm.

Short Answer

Expert verified

Phase constant for motion is 1.91 rad

Step by step solution

01

The given data

Vertical axis scale isxm=6cm .

02

Understanding the concept of phase

Phase is the cosine of an angle. We can use this concept to find the phase. We are given the position versus time graph from which we find the position at t=0 sec. The amplitude is given. So, we use that to find the phase.

03

Calculation of phase constant

We are given the graph of position vs time. In that at t=0position is x=--2cm and amplitude is 6 cm so, the phase is calculated as follows:

We know the equation of position,

x=xmcosωt+f

-2cm=6cm.cosωt+ff+ωt=1.91rad

At,t=0, we have the phase constant of the oscillation as,ϕ=1.91rad.

Therefore, the phase constant is 1.91 rad .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Although California is known for earthquakes, it has large regions dotted with precariously balanced rocks that would be easily toppled by even a mild earthquake. The rocks have stood this way for thousands of years, suggesting that major earthquakes have not occurred in those regions during that time. If an earthquake were to put such a rock into sinusoidal oscillation (parallel to the ground) with a frequency of2.2Hz, an oscillation amplitude of1.0cmwould cause the rock to topple. What would be the magnitude of the maximum acceleration of the oscillation, in terms of g?

Which of the following relationships between the acceleration a and the displacement x of a particle involve SHM: (a) a=0.5x, (b) a=400x2, (c) a=20x, (d)a=-3x2?

In Figure 15-31, two springs are attached to a block that can oscillate over a frictionless floor. If the left spring is removed, the block oscillates at a frequency of 30 Hz. If, instead, the spring on the right is removed, the block oscillates at a frequency of 45 Hz. At what frequency does the block oscillate with both springs attached?

A grandfather clock has a pendulum that consists of a thin brass disk of radius r = 15.00 cm and mass 1.000 kg that is attached to a long thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk, as shown in Fig. 15-5 If the pendulum is to have a period of 2.000 s for small oscillations at a place where g=9.800m/s2,what must be the rod length L to the nearest tenth of a millimeter?

A block weighing 10.0 Nis attached to the lower end of a vertical spring (k=200.0N/m), the other end of which is attached to a ceiling. The block oscillates vertically and has a kinetic energy of 2.00 Jas it passes through the point at which the spring is unstretched. (a) What is the period of the oscillation? (b) Use the law of conservation of energy to determine the maximum distance the block moves both above and below the point at which the spring is unstretched. (These are not necessarily the same.) (c) What is the amplitude of the oscillation? (d) What is the maximum kinetic energy of the block as it oscillates?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free