Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A block is on a horizontal surface (a shake table) that is moving back and forth horizontally with simple harmonic motion of frequency 2.0Hz. The coefficient of static friction between block and surface is0.50. How great can the amplitude of the SHM be if the block is not to slip along the surface?

Short Answer

Expert verified

The greatest value for amplitude of SHM will be0.031m, if the block is not to slip along the surface.

Step by step solution

01

The given data

  1. Frequency of block in SHM,f=2.0Hz
  2. Coefficient of static friction,μs=0.5
02

Understanding the concept of Newton’s law of motion

Using Newton’s 2nd law, we can equate the frictional force to the product of mass and acceleration. Hence, we can find the maximum amplitude for SHM.

Formula:

The normal force applied to a body due to its weight, FN=mg(i)

The angular frequency of an oscillation, ω=2πf(ii)

The force on a body according to Newton’s second law, F=ma(iii)

Acceleration of block in SHM,am=Xmω2 (iv)

03

Calculation of amplitude of SHM

The maximum force that can be exerted by the surface must be less than μsFN,

So, we can say that,

F=μsFN (V)

Substituting equations (i), (iii) & (iv) in equation (v), we get

μ3mg=m×Xmω2Xm=μsgω2=μsg2πf2

Substitute the values to find the value of amplitude,

Xm=0.58×9.82π×22=0.031m

Hence, the value of amplitude is0.031m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 15-59, a solid cylinder attached to a horizontal spring (k=3.00 N/m) rolls without slipping along a horizontal surface. If the system is released from rest when the spring is stretched by 0.250 m , find (a) the translational kinetic energy and (b) the rotational kinetic energy of the cylinder as it passes through the equilibrium position. (c) Show that under these conditions the cylinder’s center of mass executes simple harmonic motion with period T=2π3M2k where M is the cylinder mass. (Hint: Find the time derivative of the total mechanical energy.)

A block weighing 10.0 Nis attached to the lower end of a vertical spring (k=200.0N/m), the other end of which is attached to a ceiling. The block oscillates vertically and has a kinetic energy of 2.00 Jas it passes through the point at which the spring is unstretched. (a) What is the period of the oscillation? (b) Use the law of conservation of energy to determine the maximum distance the block moves both above and below the point at which the spring is unstretched. (These are not necessarily the same.) (c) What is the amplitude of the oscillation? (d) What is the maximum kinetic energy of the block as it oscillates?

In Fig.15-51, three 10000 kgore cars are held at rest on a mine railway using a cable that is parallel to the rails, which are inclined at angleθ=30°. The cable stretches 15 cmjust before the coupling between the two lower cars breaks, detaching the lowest car. Assuming, that the cable obeys Hooke’s law, find the (a) frequency and (b) amplitude of the resulting oscillations of the remaining two cars.

Question: In Figure, a physical pendulum consists of a uniform solid disk (of radius R = 2.35 cm ) supported in a vertical plane by a pivot located a distance d = 1.75 cm from the center of the disk. The disk is displaced by a small angle and released. What is the period of the resulting simple harmonic motion?

Figure below gives the position x(t)of a block oscillating in SHM on the end of a spring(ts=40.0ms).

  1. What is the speed of a particle in the corresponding uniform circular motion?
  2. What is the magnitude of the radial acceleration of that particle?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free