Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 15-29gives, for three situations, the displacements of a pair of simple harmonic oscillators (A and B) that are identical except for phase. For each pair, what phase shift (in radians and in degrees) is needed to shift the curve for A to coincide with the curve for B? Of the many possible answers, choose the shift with the smallest absolute magnitude.

Short Answer

Expert verified

a) Phase shift needed for A to coincide with B for curve (a) is πrad or 180°.

b) Phase shift needed for A to coincide with B for curve (b) is π2or 90°.

c) Phase shift needed for A to coincide with B for curve (c) is -π2rad or -90°.

Step by step solution

01

The given data 

From the problem figure 15-29 is the graphs of x versus t.

02

Understanding the concept of the phase shift

We observe the given graphs and we can see the positions of curve A for B. Then we can determine by how many angles should the curve needs to shift to coincide with B.

03

Calculation of phase shift for curve (a)

a)

In graph (a) A and B have opposite phase, so for curve A needs to shift by πrador180° to coincide with B.

04

Calculation of phase shift for curve (b)

b)

In graph (b) curve A lags behind curve B by π2radians, therefore curve A needs to shift by π2rad or90° to coincide with B.

05

Calculation of phase shift for curve (c)

c)

In graph (c) curve A leads curve B by π2rad, therefore curve A needs to shift by -π2rador-90°to coincide with B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The suspension system of a2000kgautomobile “sags”10cmwhen the chassis is placed on it. Also, the oscillation amplitude decreases by 50% each cycle.

  1. Estimate the value of the spring constant K.
  2. Calculate the damping constantfor the spring and shock absorber system of one wheel, assuming each wheel supports500kg.

You are to build the oscillation transfer device shown in Fig.15-27. It consists of two spring–block systems hanging from a flexible rod. When the spring of system is stretched and then released, the resulting SHM of system at frequency oscillates the rod. The rod then exerts a driving force on system 2, at the same frequency f1. You can choose from four springs with spring constants k of 1600,1500,1400, and 1200 N/m, and four blocks with masses m of 800,500,400, and 200 kg. Mentally determine which spring should go with which block in each of the two systems to maximize the amplitude of oscillations in system 2.

In Fig. 15-64, a 2500 Kgdemolition ball swings from the end of a crane. The length of the swinging segment of cable is 17m. (a) Find the period of the swinging, assuming that the system can be treated as a simple pendulum. (b) Does the period depend on the ball’s mass?

What is the phase constant for the harmonic oscillator with the position functionx(t)given in Figure if the position function has the formx=xmcos(ωt+f)? The vertical axis scale is set byxm=6.0cm.

Figure 15-26shows three physical pendulums consisting of identical uniform spheres of the same mass that are rigidly connected by identical rods of negligible mass. Each pendulum is vertical and can pivot about suspension point O. Rank the pendulums according to their period of oscillation, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free