Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The physical pendulum in Fig. 15-62 has two possible pivot points A and B. Point A has a fixed position but B is adjustable along the length of the pendulum as indicated by the scaling. When suspended from A, the pendulum has a period ofT=1.80s. The pendulum is then suspended from B, which is moved until the pendulum again has that period. What is the distance L between A and B?

Short Answer

Expert verified

Length between A and B is 0.804 m

Step by step solution

01

The given data

The period of oscillations, T=1.8sec.

02

Understanding the concept of SHM

The pendulum is suspended from B, but according to the problem, there is no change in the period when it is suspended from A. Sousing the basic formula of the period in terms of length and acceleration due to gravity, we can find the length between A and B.

Formula:

The period of an oscillation, T=2πLg (i)

03

Calculation of length between A and B

Though the pendulum is suspended from B, but according to the problem, there is no change in the time period. We can treat the physical pendulum as a simple pendulum with a length equal to the length from the pivot point to its center of mass.

Using equation (i) and the given value of the period, we can get the length of the pendulum between A and B is given as:

L=T2g4π2=(1.8s)2×(9.8m/s2)4π2=0.804m

Hence, the value of the length is 0.804 m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A flat uniform circular disk has a mass of 3.00kgand a radius of 70.0cm. It is suspended in a horizontal plane by a vertical wire attached to its center. If the disk is rotated 2.50 radabout the wire, a torque of 0.600 N.mis required to maintain that orientation.

  1. Calculate the rotational inertia of the disk about the wire.
  2. Calculate the torsion constant.
  3. Calculate the angular frequency of this torsion pendulum when it is set oscillating.

A 2.0 kg block is attached to the end of a spring with a spring constant of 350 N/m and forced to oscillate by an applied force F(15N)sin(ωdt), where ωd=35rad/s. The damping constant is b=15kg/s.Att=0, the block is at rest with the spring at its rest length. (a) Use numerical integration to plot the displacement of the block for the first 1.0 s. Use the motion near the end of the 1.0 sinterval to estimate the amplitude, period, and angular frequency. Repeat the calculation for (b)ωd=KMand (c)ωd=20rad/s.

A block weighing 20 Noscillates at one end of a vertical spring for which k=100 N/m; the other end of the spring is attached to a ceiling. At a certain instant the spring is stretched 0.30 mbeyond its relaxed length (the length when no object is attached) and the block has zero velocity. (a) What is the net force on the block at this instant? What are the (b) amplitude and (c) period of the resulting simple harmonic motion? (d) What is the maximum kinetic energy of the block as it oscillates?

A grandfather clock has a pendulum that consists of a thin brass disk of radius r = 15.00 cm and mass 1.000 kg that is attached to a long thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk, as shown in Fig. 15-5 If the pendulum is to have a period of 2.000 s for small oscillations at a place where g=9.800m/s2,what must be the rod length L to the nearest tenth of a millimeter?

Question: An oscillator consists of a block attached to a spring (k = 400 N/m). At some time t, the position (measured from the system’s equilibrium location), velocity, and acceleration of the block are, x =0.100 m,v = 13.6 m and a = 123 m/s2. Calculate (a) the frequency of oscillation,(b) the mass of the block, and (c) the amplitude of the motion.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free