Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

During volcanic eruptions, chunks of solid rock can be blasted out of the volcano; these projectiles are called volcanic bombs.Figure 4-51 shows a cross section of Mt. Fuji, in Japan. (a) At what initial speed would a bomb have to be ejected, at angleθ0=35°to the horizontal, from the vent at Ain order to fall at the foot of the volcano at B,at vertical distance h=3.30km and horizontal distanced=9.40km? Ignore, for the moment, the effects of air on the bomb’s travel. (b) What would be the time of flight? (c) Would the effect of the air increase or decrease your answer in (a)?

Short Answer

Expert verified

a) The initial velocity of a volcanic bomb is 260 m/s

b) The time of flight is 45 s.

c) The initial velocity will be increase.

Step by step solution

01

The given data

1) Angleoftheejection,θ=35°2) Verticaldistance,y=3.30kmor-3300m(downard)3) Horizontaldistance,x=9.40kmor9400m

02

Understanding the concept of the relative motion

The volcanic bomb has only gravitational force acting on it. Therefore, its acceleration is constant in the vertical direction and there is no acceleration in the horizontal direction. Hence, we can treat this motion as projectile motion.

Formulae:

The equation of distance in the projectile motion,y=tanθ0x-gx22V0cosθ02 …(i)

The time of flight of a body in projectile motion T=xV0cosθ0 …(ii)

03

(a) Calculation of the initial velocity

By rearranging equation (i) of projectile motion, we get the value of the initial velocity of the volcanic bomb by substituting the given values as follows:

V0=9400mcos35°9.8m/s229400m×tan(35°--3300m)=255.52m/s260m/s

Hence, the value of the initial velocity is 260 m/s.

04

(b) Calculation of the time of flight

Using the given values in equation (ii), we can get the value of the time of flight as follows:

T=9400m255.52m/scos35°=44.91sec45sec

Hence, the value of time is 45 se c.

05

(c) Calculation of the effect of the air

The air will oppose the motion of the volcanic bomb, hence we expect the initial speed required to reach the foot of the volcano will be increase.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 4-32, particleAmoves along the linelocalid="1654157716964" y=30mwith a constant velocitylocalid="1654157724548" vof magnitude localid="1654157733335" 3.0m/sand parallel to thelocalid="1654157740474" xaxis. At the instant particlelocalid="1654157754808" Apasses thelocalid="1654157747127" yaxis, particlelocalid="1654157760143" Bleaves the origin with a zero initial speed and a constant accelerationlocalid="1654157772700" aof magnitudelocalid="1654157766903" 0.40m/s2. What anglelocalid="1654157780936" θbetween aand the positive direction of thelocalid="1654157787877" yaxis would result in a collision?

The position vector r=5.00ti^+(et+ft2)j^locates a particle as a function of time. Vector ris in meters, tis in seconds, and factors e and f are constants. Figure 4-31 gives the angle θof the particle’s direction of travel as a function of t(θis measured from the positivedirection). What are (a) e, and (b) f, including units?

The pilot of an aircraft flies due east relative to the ground in a wind blowing 20.0km/htoward the south. If the speed of the aircraft in the absence of wind is 70.0 km/h, what is the speed of the aircraft relative to the ground?

You are to throw a ball with a speed of 12.0m/sat a target that is height
h=5.00mabove the level at which you release the ball (Fig. 4-58). You want the ball’s velocity to be horizontal at the instant it reaches the target. (a) At what angle above the horizontal must you throw the ball? (b) What is the horizontal distance from the release point to the target? (c) What is the speed of the ball just as it reaches the target?

Some state trooper departments use aircraft to enforce highway speed limits. Suppose that one of the airplanes has a speed of 135mi/hin still air. It is flying straight north so that it is at all times directly above a north–south highway. A ground observer tells the pilot by radio that a70.0mi/hwind is blowing but neglects to give the wind direction. The pilot observes that in spite of the wind the plane can travel135mialong the highway in1.00h. In other words, the ground speed is the same as if there were no wind. (a) From what direction is the wind blowing? (b) What is the heading of the plane; that is, in what direction does it point?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free