Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 4-23 shows three situations in which identical projectiles are launched (at the same level) at identical initial speeds and angles. The projectiles do not land on the same terrain, however. Rank the situations according to the final speeds of the projectiles just before they land, greatest first.

Short Answer

Expert verified

Rank: a > b > c

Step by step solution

01

Given information

a=-9.8m/s2

Displacement signs for each situation

ya=negativeyb=zeroyc=positive

02

To understand the concept

It is known that horizontal component of velocity is same at any point in projectile motion. So the final speed can be compared by the vertical components of speed. Vertical component can be calculated by using the kinematic equations. In kinematic equations of motion, the motion of an object can be described with constant acceleration. Further it can be ranked according to the speed.

Formulae:

The final velocity can be written as

vfy2=v0y2+2×a×y

03

To rank situations according to the final speeds of the projectiles just before they land

Rank a;

vfy2=v0y2+2×-a×-yvfy2=v0y2+2×a×y

So, final speed will be greater than initial speed.

Rank b;

vfy2=v0y2+2×-a×0vfy2=v0y2

So, final speed will be same as initial speed.

Rank c;

vfy2=v0y2+2×-a×yvfy2=v0y2-2×a×y

So final speed will be less than initial speed.

Therefore, from these three results we can rank the final speed as:

Rank :a>b>c

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle starts from the origin at t=0with a velocity of 8.0j^m/sand moves in the x-y plane with constant acceleration (4.0i^+2.0j^)m/s2. When the particle’s x-coordinate is 29 m, what are it’s (a) y-coordinate and (b) speed?

Aprotoninitiallyhasv=4.0i^-2.0j^+3.0k^andthen4.0slaterhasv=4.0i^-2.0j^+3.0k^(inmeterspersecond).Forthat,4.0swhatare(a)theprotonsaverageaccelerationaavginunitvectornotation.(b)themagnitudeaavgofand(c)theanglebetweenaavgandthepositivedirectionoftheaxis.

The minute hand of a wall clock measures10cm from its tip to the axis about which it rotates. The magnitude and angle of the displacement vector of the tip are to be determined for three time intervals. What are the (a) magnitude and (b) angle from a quarter after the hour to half past, the (c) magnitude and (d) angle for the next half hour, and the (e) magnitude and (f) angle for the hour after that?

Two ships, A and B, leave port at the same time. Ship A travels northwest at 24knots, and ship B travels at 28knotsin a direction 40°west of south. ((1knot=1nauticalmileperhour)).What are the (a) magnitude and (b) direction of the velocity of ship A relative to B? (c) After what time will the ships be 160 nautical miles apart? (d) What will be the bearing of B (the direction of B’s position) relative to A at that time?

A golfer tees off from the top of a rise, giving the golf ball an initial velocity of 43.0 m/sat an angle of30.0°above the horizontal. The ball strikes the fairway a horizontal distance of180 mfrom the tee. Assume the fairway is level. (a) How high is the rise above the fairway? (b) What is the speed of the ball as it strikes the fairway?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free