Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rifle that shoots bullets at460m/sis to be aimed at a target45.7 away. If the center of the target is level with the rifle, how high above the target must the rifle barrel be pointed so that the bullet hits dead center?

Short Answer

Expert verified

The rife barrel be pointed0.0484m above the ground

Step by step solution

01

Given information

g=9.8m/s2v0=460m/sR=45.7m

02

Determining the concept of projectile motion 

This problem deals with the projectile motion of an object. In projectile motion,the motion experienced by an object or particle that moves under the action of gravity only.

In this case, the distance between the target and the rifle is given and they are levelled with each other, so using the formula for range of the projectile, the angle with which the projectile is fired can be found and using this, how high should the rifle barrel must be, can be calculated.

Formula:

The range of the particle in projectile motion is given by

R=θ02sin2g (i)

03

Determining the height of the rifle to be kept above the ground

Using equation (i),

R×g=v02sin2θsin2θ=R×gv022θ=sin-1R×gv02θ=sin-1R×gv022θ=sin-145.7×9.846022θ=0.0606°

Assumeh=heightoftherifletobekeptabovetheground

tanθ=hRtan0.0606=h45.71.05×10-3=h45.7h=1.05×10-3×45.7

Thus

The rife barrel be pointed0.0484m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A woman who can row a boat at 6.4 km/hin still water faces a long, straight river with a width of 6.4 km and a current of 3.2 km/h.i^ Letpoint directly across the river andj^point directly downstream. If she rows in a straight line to a point directly opposite her starting position, (a) at what angle toi^must she point the boat and (b) how long will she take? (c) How long will she take if, instead, she rowsdownthe river and then back to her starting point? (d) How long if she rows 3.2 kmupthe river and then back to her starting point? (e) At what angle toi^should she point the boat if she wants to cross the river in the shortest possible time? (f) How long is that shortest time?

A light plane attains an airspeed of 500km/h. The pilot sets out for a destination 800kmdue north but discovers that the plane must be headed role="math" localid="1655442378207" 20.0°east of due north to fly there directly. The plane arrives in2.00hr. What were the (a) magnitude and (b) direction of the wind velocity?

A radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distanced1=360mfrom the station and at angle θ1=40°above the horizon (Fig. 4-49). The airplane is tracked through an angular changeθ=123°in the vertical east–west plane; its distance is thend2=790m. Find the (a) magnitude and (b) direction of the airplane’s displacement during this period.

You are kidnapped by political-science majors (who are upset because you told them political science is not real science). Although blindfolded, you can tell the speed of their car (by the whine of the engine), the time of travel (by mentally counting off seconds), and the direction of travel (by turns along the rectangular street system). From these clues, you know that you are taken along the following course: 50Km/hfor2.0min, turn 90°to the right,20Km/h for4.0min, turn 90°to the right, 20Km/hfor60s, turn 90°to the left,50Km/hfor60s, turn 90°to the right, 20Km/hfor2.0min, turn90° to the left 50Km/hfor30s. At that point, (a) how far are you from your starting point, and (b) in what direction relative to your initial direction of travel are you?

During a tennis match, a player serves the ball at23.6m/s, with the center of the ball leaving the racquet horizontally2.37mabove the court surface. The net is12maway and0.90mhigh. When the ball reaches the net, (a) does the ball clear it and (b) what is the distance between the center of the ball and the top of the net? Suppose that, instead, the ball is served as before but now it leaves the racquet at5.00° below the horizontal. When the ball reaches the net, (c) does the ball clear it and (d) what now is the distance between the center of the ball and the top of the net?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free