Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The current world-record motorcycle jump is 77.0m, set by Jason Renie. Assume that he left the take-off ramp at12.0° to the horizontal and that the take-off and landing heights are the same. Neglecting air drag, determine his take-off speed.

Short Answer

Expert verified

The take-off speed of the Jason Renie’ is v0=43.1m/s

Step by step solution

01

Given information

Projection angle with horizontal is=120

Range is given as R=77.0m

02

To understand the concept

This problem deals with the horizontal range of the particle which is nothing but the horizontal distance from the launch point at which the particle returns to the launch height. Using the formula for the range of the particle, take -off speed of the Jason Renie’s motorcycle can be found.

Formula:

The particle’s horizontal range can be given as,

R=v02gsin2 (i)

Where v0is the initial velocity of the particle.

03

To find the take-off speed 

Using equation (i) the take-off speed can be written as,

v0=Rgsin2

v0=77.0m9.8m/s2sin2(12.0°)

Thus, the take=off speed is v0=43.1m/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Long flights at mid-latitudes in the Northern Hemisphere encounter the jet stream, an eastward airflow that can affect a plane’s speed relative to Earth’s surface. If a pilot maintains a certain speed relative to the air (the plane’s airspeed), the speed relative to the surface (the plane’s ground speed) is more when the flight is in the direction of the jet stream and less when the flight is opposite the jet stream. Suppose a round-trip flight is scheduled between two cities separated by 4000 km, with the outgoing flight in the direction of the jet stream and the return flight opposite it.The airline computer advises an airspeed of 1000 km/hr, for which the difference in flight times for the outgoing and return flights is 70.0 min.What jet-stream speed is the computer using?

Figure 4-30gives the path of a squirrel moving about on level ground, from point A (at timet=0), to points B (at t=5.00min), C (at t=10.0min), and finally D (at t=15.0min). Consider the average velocities of the squirrel from point A to each of the other three points. Of them, what are the (a) magnitude and (b) angle of the one with the least magnitude and the (c) magnitude and (d) angle of the one with the greatest magnitude?

The velocity vof a particle moving in the xy plane is given by v=(6.0t-4.0t2)i-(8.0)j, with vin meters per second and t(>0) in seconds. (a) What is the acceleration when t=3.0 s ? (b) When (if ever) is the acceleration zero? (c) When (if ever) is the velocity zero? (d) When (if ever) does the speed equal 10 m/s ?

A particle Ptravels with constant speed on a circle of radiusr=3.00m(Fig. 4-56) and completes one revolution in 20.0s. The particle passes through Oat time t= 0. State the following vectors in magnitude angle notation (angle relative to the positive direction of x).With respect to 0, find the particle’s position vectorat the times tof (a) 5.00s, (b)7.50s, and (c)10.0s. (d) For the 5.00sinterval from the end of the fifth second to the end of the tenth second, find the particle’s displacement. For that interval, find (e) its average velocity and its velocity at the (f) beginning and (g) end. Next, find the acceleration at the (h) beginning and (i) end of that interval.

A train at a constant 60.0km/hmoves east formoves east for40.0min, then in a direction50.0°east of due north for20.0min, and then west for50.0min. What are the (a) magnitude and (b) an angle of its average velocity during this trip?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free