Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cart is propelled over a xyplane with acceleration componentsax=4.0m/s2anday=-2.0m/s2.Its initial velocity has components v0x=8.0m/s.Andv0y=12m/s.In unit-vector notation, what is the velocity of the cart when it reaches its greatest y coordinate?

Short Answer

Expert verified

The velocity of the cart when it reachesy=ymaxis32m/si^

Step by step solution

01

Given information

Acceleration along x and y axes are

ax=4.0m/s2ay=-2.0m/s2

Initial velocity components along x and y axis are

v0x=8.0m/sv0y=12m/s

02

To understand the concept

This problem is based on kinematic equations that describe the motion of an object with constant acceleration. Here, first kinematic equation for vertical motion to find the time for whichvmax=0m/s. Using the value obtained for time in the first kinematic equation along x axis, the velocity of the cart when it reaches its greatest y coordinate can be found.

Formula:

The final velocity in kinematic equation can be written as,

vf=v0+at (i)

Where, v0is the initial velocity

03

To find the time t when vmax=0m/s along y axis

The final velocity along y axis is given by,

vy=v0y+at0=12m/s+-2.0tt=6.0s

04

To find the velocity of the cart along x axis when it reaches itsgreatest y coordinate

The final velocity along x axis is given by

vx=v0x+atvx=8.0ms+4.0ms26.0svx=32m/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 4-40, a ball is launched with a velocity of magnitude10.0m/s, at an angle of 50.0°to the horizontal. The launch point is at the base of a ramp of horizontal length d1=6.00mand heightrole="math" localid="1654153249604" d2=3.60m. A plateau is located at the top of the ramp. (a)Does the ball land on the ramp or the plateau? When it lands, what are the (b) magnitude and (c) angle of its displacement from the launch point?

A graphing surprise. At timet=0, a burrito is launched from level ground, with an initial speed of16.0m/sand launch angle. Imagine a position vector continuously directed from the launching point to the burrito during the flight. Graph the magnitude rof the position vector for (a)θ0=40.0oand (b)θ0=80.0o. Forθ0=40.0o, (c) when does rreach its maximum value, (d) what is that value, and how far (e) horizontally and (f) vertically is the burrito from the launch point? Forθ0=80.0o(g) when does rreach its maximum value, (h) what is that value, and how far (i) horizontally and (j) vertically is the burrito from the launch point?

In basketball, hang is an illusion in which a player seems to weaken the gravitational acceleration while in mid-air. The illusion depends much on a skilled player’s ability to rapidly shift the ball between hands during the flight, but it might also be supported by the longer horizontal distance the player travels in the upper part of the jump than in the lower part. If a player jumps with an initial speed ofvo=7.00m/sat an angle of θo=35.0°, what percent of the jump’s range does the player spend in the upper half of the jump (between maximum height and half maximum height)?

A particle Ptravels with constant speed on a circle of radiusr=3.00m(Fig. 4-56) and completes one revolution in 20.0s. The particle passes through Oat time t= 0. State the following vectors in magnitude angle notation (angle relative to the positive direction of x).With respect to 0, find the particle’s position vectorat the times tof (a) 5.00s, (b)7.50s, and (c)10.0s. (d) For the 5.00sinterval from the end of the fifth second to the end of the tenth second, find the particle’s displacement. For that interval, find (e) its average velocity and its velocity at the (f) beginning and (g) end. Next, find the acceleration at the (h) beginning and (i) end of that interval.

The position vector for an electron is r=(5.0m)i^-(3.0m)j^+(2.0m)k^.

(a) Find the magnitude ofr. (b) Sketch the vector on a right-handed coordinate system.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free