Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You are driving directly behind a pickup truck, going at the same speed as the truck. A crate falls from the bed of the truck to the road. (a) Will your car hit the crate before the crate hits the road if you neither brake nor swerve? (b) During the fall, is the horizontal speed of the crate more than, less than, or the same as that of the truck?

Short Answer

Expert verified
  1. The car will not hit the crate before the crate hits the road if you neither brake nor swerve
  2. Horizontal speed of the crate is same as that of the truck.

Step by step solution

01

To understand the concept

The problem deals with the Newton’s first law of motion. It states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.

02

(a) Will the car hit the crate before the crate hits the road if you neither brake nor swerve?

The car will not hit the crate because both vehicles are moving at a constant speed with the same frame of references. Also, when the crate falls from the truck, there will be no external force acting on it, therefore according to Newton’s first law, it will have same velocity as that of the truck. Hence, it will not be able to hit the car before it hits the ground.

03

(b) During the fall, is the horizontal speed of the crate more than, less than, or the same as that of the truck

As air drag acting on crate is negligible, horizontal speed of the crate is same as that of the truck

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The pitcher in a slow-pitch softball game releases the ball at a pointabove ground level. A stroboscopic plot of the position of the ball is shown in Fig. 4-60, where the readings areapart and the ball is released at. (a) What is the initial speed of the ball? (b) What is the speed of the ball at the instant it reaches its maximum height above ground level? (c) What is that maximum height?

A soccer ball is kicked from the ground with an initial speed of19.5m/sat an upward angle of45°. A player55m away in the direction of the kick starts running to meet the ball at that instant. What must be his average speed if he is to meet the ball just before it hits the ground?

A 200-m -wide river has a uniform flow speed of1.1 m/sthrough a jungle and toward the east. An explorer wishes to leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of4.0 m/swith respect to the water. There is a clearing on the north bank82 mupstream from a point directly opposite the clearing on the south bank. (a) In what direction must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank? (b) How long will the boat take to cross the river and land in the clearing?

A particle is in uniform circular motion about the origin of an x-ycoordinate system, moving clockwise with a period of 7.00s. At one instant, its position vector (measured from the origin) isr=(2.00m)i^.(3.00m)j^ . At that instant, what is its velocity in unit-vector notation?

A dart is thrown horizontally with an initial speed of10m/stoward pointP, the bull’s-eye on a dart board. It hits at pointQon the rim, vertically belowP,0.19s later. (a)What is the distancePQ? (b) How far away from the dart board is the dart released?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free