Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a)If an electron is projected horizontally with a speed of 3.0×106m/s, how far will it fall in traversing1.0mof horizontal distance?

(b)Does the answer increase or decrease if the initial speed is increased?

Short Answer

Expert verified

(a) The vertical fall of the electron is =5.4×10-13m

(b) The answer decreases if the initial speed is increased.

Step by step solution

01

Given data

1) The horizontal speed of an electron is,Vx=3.00×106m/s .

2) The horizontal distance traveled by the electron is,x=1.0m.

02

Understanding the concept of projectile motion

In the projectile motion, when the object is thrown horizontally, there is no acceleration in the horizontal direction. Therefore, the object moves with constant speed in the horizontal direction. However, in the vertical direction, it is acted upon by gravitational acceleration. Therefore, the motion in the vertical direction can be described using the kinematic equations. Using kinematic equations and treating the electron as a projectile, we can solve the given problem for the required quantities.

Formula:

Vf=Vi+at

Where Vfis the final velocity, Viis the initial velocity, ais the acceleration, and t is the time.

y=Vit+12at2

03

Calculate the time required for an electron to move1.0m horizontally

To determine the vertical fall, we first need to calculate the time required to move horizontally through a distance of 1.0m

We use the definition of speed to calculate the time since horizontal motion is not an accelerated motion.

i.e.ax=0

Hence,

vx=xtt=xvx

Substitute the 1mforx, and3×106m/sin the above equation.

=1.0m3.0×106m/s=3.33×10-7s

Therefore, it will take 3.33×10-7sto travel1.0m for an electron in the horizontal direction.

04

(a) Calculate the vertical distance travelled

Now, for the vertical motion of the electron, the initial vertical speed is given to be zero and the acceleration is gravitational acceleration directed downwards.

Hence, the second kinematical equation helps us determine the vertical distance traveled by the electron is the same time t.

y=Vit+12at2

Substitute the 0 for Vi,9.8m/s2fora,and3.33×10-7sfortin the above equation.

=0+12×9.8M/S2×3.33×10-7S2=5.4×10-13m

Therefore, the vertical distance traveled by the electron is 5.4×10-13m.

05

(b) Finding out if the answer increases or decreases if the initial speed is increased

If the initial speed of the electron increases, it will take lesser time to travel the same horizontal distance of 1.0 m. Hence the time available for the vertical fall will also be less. It means that the vertical fall distance will also be reduced.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 200-m -wide river has a uniform flow speed of1.1 m/sthrough a jungle and toward the east. An explorer wishes to leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of4.0 m/swith respect to the water. There is a clearing on the north bank82 mupstream from a point directly opposite the clearing on the south bank. (a) In what direction must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank? (b) How long will the boat take to cross the river and land in the clearing?

Shipis located 4.0 kmnorth and 2.5 kmeast of ship B. Ship Ahas a velocity of 22 km/htoward the south, and ship Bhas a velocity of 40 km/hin a direction37° north of east. (a)What is the velocity of Arelative to Bin unit-vector notation with toward the east? (b)Write an expression (in terms of i^andj^) for the position ofArelative to Bas a function of t, wheret=0when the ships are in the positions described above. (c)At what time is the separation between the ships least? (d)What is that least separation?

A cart is propelled over a xyplane with acceleration componentsax=4.0m/s2anday=-2.0m/s2.Its initial velocity has components v0x=8.0m/s.Andv0y=12m/s.In unit-vector notation, what is the velocity of the cart when it reaches its greatest y coordinate?

A soccer ball is kicked from the ground with an initial speed of19.5m/sat an upward angle of45°. A player55m away in the direction of the kick starts running to meet the ball at that instant. What must be his average speed if he is to meet the ball just before it hits the ground?

In the overhead view of Fig.4-47, Jeeps P and B race along straight lines, across flat terrain, and past stationary border guard A. Relative to the guard, B travels at a constant speed of 20.0m/s, at the angleθ2=30.0°. Relative to the guard, P has accelerated from rest at a constant rate of 0.400m/s2at the angle θ1=60.0°At a certain time during the acceleration, P has a speed of40.0m/s. At that time, what are the (a) magnitude and (b) direction of the velocity of P relative to B and the (c) magnitude and (d) direction of the acceleration of P relative to B?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free