Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A ball is shot vertically upward from the surface of another planet. A plot of y vs t for the ball is shown in Fig 2-36, where y is the height of the ball above its starting point and t=0 at the instant the ball is shot. The figure’s vertical scaling is set by ys=30.0m.. What are the magnitudes of (a) the free fall acceleration on the planet and (b) the initial velocity of the ball?

Short Answer

Expert verified

(a) Free fall acceleration of a given planet is 8m/s2.

(b) Initial velocity of the ball is 20 m/s .

Step by step solution

01

Given data

The graph of y(m) against t(s) with vertical scaling set by ys=30.0m..

02

The concept of free fall

The situation of a body moving freely in any direction in the presence of gravity is referred to as free fall.During the free fall, the body is acted upon by acceleration due to gravity.

03

(a) Calculations for acceleration due to gravity using kinematic equations

Here, assume that the downward direction is negative. Also, the time taken by the object to reach the ground would be half of the total time of the flight. From the figure, it can be seen that the total time of flight is 5 s. Therefore, the time taken by the object to reach the ground is half of the time of flight. Therefore, the time is 2.5 sec

y=Vit+12at2-25=0-0.5g(2.5)2g=-8m/s2

Hence, the free-fall acceleration is -8m/s2

04

(b) Calculations for initial velocity

Applying kinematic equations of motions and gravity calculated in part a) we get,

y=Vit+12at2-25m=Vi(2.5s)-12×8m/s2×(2.5s)2Vi=20m/s

Hence, the initial velocity is 20m/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When a soccer ball is kicked toward a player and the player deflects the ball by “heading” it, the acceleration of the head during the collision can be significant. Figure 2-38 gives the measured acceleration a(t) of soccer player’s head for a bare head and a helmeted head, starting from rest. The scaling on the vertical axis is set byas=200m/s2.Attimet=7.0ms , what is the difference in the speed acquired by the bare head and the speed acquired by the helmeted head?

The position of an object moving along an x axis is given by,x=3t-4t2+t3 where x is in metres and tin seconds. Find the position of the object at following values of t:a) 1sec,(b)2sec, (c) 3sec, and (d) 4sec,(e) What is the object’s displacement between t=0and t=4sec? (f)What is its average velocity for the time interval from t=2sto t=4s? (g)Graph x vs t for0t4secand indicate how the answer for f can be found on the graph.

A ball of moist clay falls 15.0m to the ground. It is in contact with the ground for 20.0m sbefore stopping. (a) What is the magnitude of average acceleration of the ball during the time it is in contact with the ground? (treat the ball as a particle). (b) Is the average acceleration up or down?

At a construction site, a pipe wrench stuck the ground with a speed of 24 m/s(a)From what height was it inadvertently dropped? (b)How long was it falling? (c)Sketch graphs of y,v and a versus t for the wrench.

The position of a particle moving along an x axis is given byx=12t2-2t3, where x in metres and t in sec. Determine (a) the position. (b) the velocity, and (c) the acceleration of the particle at t=3 s . (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle, and (g) at what time is it reached? (h) What is the acceleration of the particle at the instant the particle is not moving? (Other than t=0)? (i) Determine the average velocity of the particle between t=0 and t=3 s.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free