Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The brakes on your car can slow you at a rate of 5.2m/s2. (a)If you are going 137 km/ hand suddenly see a state trooper, what is the minimum time in which you can get your car under the90 km/ hspeed limit? (The answer reveals the futility of braking to keep your high speed from being detected with a radar or laser gun). (b)Graph x vs t and v vs t for such a slowing.

Short Answer

Expert verified

a) Minimum time taken to get the car under 90 km/ h speed limit is 2.5 s.

Step by step solution

01

Given information

v0=137km/hvf=90km/ha=-5.2m/s2

02

Concept and formula used in the given question

The problem deals with the kinematic equation of motion in which the motion of an object is described at constant acceleration. Breaks of the car would generate deceleration, which would cause the car to slow down. The time required to bring the car under certain speed limits can be found by using kinematic equations which are given below.

Formula:

The final velocity in the kinematic equation is given by,

vf=v0+a×t (i)

03

(a) Calculation for the minimum time in which you can get your car under the 90 km/ h speed limit

Tofindthetime,firstwehavetoconvertthespeedkm/hintom/s.1kmh=3600s1000m137kmh×1000m3600s×1h1km=38.1m/s90kmh×1000m3600s×1h1km=25m/sUsingequation(i),25=38.1+(-5.2)×tSo,t=2.5s

04

(b) Plotting the graph x vs t and v vs t for such a slowing

Graph of x(t) vs t is as shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two trains, each having a speed of 30 km/h, are headed at each other on the same straight track. A bird that can fly 60 km/hflies off the front of one train when they are 60 kmapart and heads directly for the other train. On reaching the other train, the bird flies directly back to the first train and so forth. (We have no idea why a bird would behave in this way). What is the total distance the bird travels before the trains collide?

In a forward punch in karate, the fist begins at rest at the waist and is brought rapidly forward until the arm is fully extended. The speed v(t)of the fist is given in figure for someone skilled in karate. The vertical scaling is set by vs=8.0m/s.. How far has the first moved at (a) time t=50ms(b) when the speed of the fist is maximum?

Figure 2-20 gives the velocity of a particle moving along an axis. Point 1 is at the highest point on the curve; point 4 is at the lowest point; and points 2 and 6 are at the same height. What is the direction of travel at (a) time t=0and (b) point 4? (c) At which of the six numbered points does the particle reverse its direction of travel? (d) Rank the six points according to the magnitude of the acceleration, greatest first.

You drive on Interstate 10 from San Antonio to Houston, half the time at 55km/hand other half at90km/h. What is your average speed (a) from San Antonio to Houston? (b) from Houston back to San Antonio? (c) for the entire trip? (d) What is your average velocity for the entire trip? (e) Sketch x vs tfor (a), assuming the motion is all in positive x direction. Indicate how the average velocity can be found on the sketch.

The position of a particle moving alongxaxis depends on the time according to the equation x=ct2bt3, wherexis in meters and tin seconds. What are the units of –(a)Constant c and (b)Constant b? Let their numerical values be 2.0and 3.0respectively. (c) At what time does the particle reach its maximum positive x position? Fromt=0.0sto t=4.0s. (d) what distance does the particle move? (e) what is its displacement? Find its velocity at times- (f) 1.0s(g) t=2.0s(h)t=3.0s(i)t=4.0sFind its acceleration at times- (j)1.0s(k)t=2.0s(l)t=3.0s(m)t=4.0s.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free