Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An electron moving along the x axis has a position given byx=16e-t, where tis in seconds. How far is the electron from the origin when it momentarily stops?

Short Answer

Expert verified

The distance traveled by the electron is 5.9 m.

Step by step solution

01

Given data

The equation that governs the motion of the electron is given as,

x=16-tm

02

Understanding the concept of velocity and displacement.

The velocity can be found by taking the derivative of x, to get the time at which electrons stop. Using this time in the equation for displacement, the distance traveled by an electron can be calculated.

Formula:

V=dxdt

03

Calculate the distance

Differentiating the given equation with respect to time, you can find

V=dxdt=ddt(16t)×e-t+16t×ddt(e-t)

You get derivative,

V=16(1-t)e-t

You get V = 0, when t= 1 s, it means an electron stops at.

Plug this time, t = 1 in equation of position you get,

x=16(1)e-1=5.9m

Therefore, an electron stops at distance 5.9 m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a passenger intent on lunch during his first ride in a hot-air balloon accidently drops an apple over the side during the balloon’s liftoff. At the moment of the apple’s release, the balloon is accelerating upward with a magnitude of 4.0m/s2and has an upward velocity of 2 m / s magnitude. What are the (a) magnitude and (b) direction of the acceleration of the apple just after it is released? (c) Just then, is the apple moving upward or downward, or is it stationery? (d) What is the magnitude of its velocity just then? (e) In the next few moments, does the speed of the apple increase, decrease, or remain constant?

(a) with what speed must a ball be thrown vertically from ground level to rise to a maximum height of? (b)How long will it be in the air? (c)Sketch graphs of y, v, a vs. t for the ball. On the first two graphs, indicate the time at which 50 mis reached.

A rock is thrown vertically upward from ground level at time t=0 . Atrole="math" localid="1656149217888" t=1.5s ,it passes the top of a tall tower, and 1.0 s later, it reaches its maximum height. What is the height of the tower?

A hot rod can accelerate from 0to60km/hin5.4s.(a) What is its average acceleration, in m/s2, during this time? (b) How far will it travel during the, assuming its acceleration is constant? (c) From rest, how much time would it require to go a distance of 0.25 kmif its acceleration could be maintained at the value in (a)?

A rock is shot vertically upward from the edge of the top of a tall building. The rock reaches its maximum height above the top of the building 1.60safter being shot. Then, after barely missing the edge of the building as it falls downward, the rock strikes the ground6.00safter it is launched. In SI units: (a) with what upward velocity is the rock shot, (b) what maximum height above the top of the building is reached by the rock, and (c) how tall is the building?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free