Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The radial probability density for the ground state of the hydrogen atom is a maximum when r = a , where is the Bohr radius. Show that the average value of r, defined as

ravg=P(r)rdr,

has the value 1.5a. In this expression for ravg , each value of (P)r is weighted with the value of r at which it occurs. Note that the average value of is greater than the value of r for which (P)r is a maximum.

Short Answer

Expert verified

ravg=1.5a

Step by step solution

01

Identification of the given data

The given data is listed below as-

The radial probability density is maximum when r = a

02

The radial probability function

Theradial probability functionfor the ground state is given by-

P(r)=(4r2a3)e-2r/a

Here, r is the radius of Hydrogen atom.

03

To Show that the average value of r, defined as ravg=∫P(r)r dr , has the value 1.5 a   

The average value of is defined as:

ravg=0rP(r)dr……(1)

Now, Pr=4r2a3e-2/a

Substitute the value of P(r) in equation (1)

ravg=04r3a3e-2r/adr

Now, let x=2ra

dx=2dra

ravg=0ax34a3e-xadx

Solving the above equation,

ravg=a40x3e-xdx

Now, ravgwill become ravg.=a(3!)4

Therefore, it is shown that ravg=1.5a.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An electron (mass m) is contained in a cubical box of widths Lx=Ly=Lz. (a) How many different frequencies of light could the electron emit or absorb if it makes a transition between a pair of the lowest five energy levels? What multiple ofh/8mL2 gives the (b) lowest, (c) second lowest, (d) third lowest, (e) highest, (f) second highest, and (g) third highest frequency?

A hydrogen atom is excited from its ground state to the state with n=4. (a) How much energy must be absorbed by the atom? Consider the photon energies that can be emitted by the atom as it de-excites to the ground state in the several possible ways. (b) How many different energies are possible; What are the (c) highest, (d) second highest, (e) third highest, (f) lowest, (g) second lowest, and (h) third lowest energies.

An electron, trapped in a finite potential energy well such as that of Fig. 39-7, is in its state of lowest energy. Are (a) its de-Broglie wavelength, (b) the magnitude of its momentum, and (c) its energy greater than, the same as, or less than they would be if the potential well were infinite, as in Fig. 39-2?

(a) What is the separation in energy between the lowest two energy levels for a container 20 cmon a side containing argon atoms? Assume, for simplicity, that the argon atoms are trapped in a one-dimensional well20cmwide. The molar mass of argon is39.9g/mol.

(b) At 300k, to the nearest power of ten, what is the ratio of the thermal energy of the atoms to this energy separation?

(c) At what temperature does the thermal energy equal the energy separation?

A hydrogen atom, initially at rest in the n = 4 quantum state, undergoes a transition to the ground state, emitting a photon in the process. What is the speed of the recoiling hydrogen atom? (Hint: This is similar to the explosions of Chapter 9.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free