Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An electron is placed in a magnetic field B that is directed along azaxis. The energy difference between parallel and antiparallel alignments of the zcomponent of the electron’s spin magnetic moment withBis6.00×10-25J. What is the magnitude ofB?

Short Answer

Expert verified

The magnitude of the magnetic field is32.36mT

Step by step solution

01

Identification of given data

Theenergy difference between parallel and antiparallel alignments of the zcomponent of the electron’s spin magnetic moment is, ΔU=6.0×10-25J

02

Definition of Potential Energy of Spin Magnetic Moment and expression for the magnitude of the magnetic field

The potential energy of the spin magnetic dipole moment kept in an external magnetic field is given by the dot product of the spin magnetic dipole moment and the external magnetic field.The expression for the magnitude of the magnetic field is given as follows,

B=ΔU2μB

Here, ΔUis theenergy difference between parallel and antiparallel alignments, and μBis themagnetic dipole moment with the value9.27×10-24J/T.

03

Determination of the Magnitude of the Magnetic Field

Substitute all the values in the expression for the magnitude of the magnetic field.

B=6.0×10-25J2×9.27×10-24J/T=3×10-19.27T=0.3236×10-1T×1000mT1T=32.36mT

Thus, the magnitude of the magnetic field is32.36mT .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figureis a one-axis graph along which two of the allowed energy values (levels) of an atom are plotted. When the atom is placed in a magnetic field of 0.500TE2, the graph changes to that of Figure bbecause of the energy associated withμorb.B. Level E1is unchanged, but level splits into a (closely spaced) triplet of levels. What are the allowed values ofm1associated with (a) Energy level E1and (b) Energy level E2? (c) In joules, what amount of energy is represented by the spacing between the triplet levels?

An electron in an external magnetic field Bext. has its spin angular momentum Szantiparallel to Bext. If the electron undergoes a spin-flip so thatSz is then parallel th Bext, must energy be supplied to or lost by the electron?

Figure 32-24 shows three loop models of an electron orbiting counterclockwise within a magnetic field. The fields are non-uniform for models 1 and 2 and uniform for model 3. For each model, are (a) the magnetic dipole moment of the loop and (b) the magnetic force on the loop directed up, directed down, or zero?

The figure 32-20 shows a circular region of radiusR=3cm in which a displacement currentis directedout of the page. The magnitude of the density of this displacement current is Jd=(4A/m2)(1-r/R), where is the radial distance (rR).(a) What is the magnitude of the magnetic field due to displacement current at 2cm?(b)What is the magnitude of the magnetic field due to displacement current at5cm ?

Uniform electric flux.Figure 32-30shows a uniform electric field is directed out of the page within a circular region of radius R=3.00cm. The field magnitude is given by, E=(4.50×10-3V/ms)twhere t is in seconds. (a)What is the magnitude of the induced magnetic field at a radial distance 2.00 cm? (b) What is the magnitude of the induced magnetic field at aradial distance 5.00 cm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free