Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 5.0μCparticle moves through a region containing the uniform magnetic field localid="1664172266088" -20imTand the uniform electric field 300j^ V/m. At a certain instant the velocity of the particle is localid="1664172275100" (17i-11j+7.0k)km/s. At that instant and in unit-vector notation, what is the net electromagnetic force (the sum of the electric and magnetic forces) on the particle?

Short Answer

Expert verified

The net electromagnetic force on the particle isF=(800j-1100k)x10-6N

Step by step solution

01

Given

kB=-20i^mTE=300j^V/mq=5×10-6C

02

Understanding the concept

Magnetic force is written from equation 28-3 as a vector product of velocity and magnetic field, and the electric force is the charge times the electric field. So the net force is the addition of magnetic force and electric force.

Formula:

F=qE+q(v×B)

03

Calculate the net electromagnetic force on the particle

According to net force formula, we can write

F=qE+qv×BF=qE+v×B

By substituting the value, we can get

localid="1662733743521" F=q300j^+17i^-11j^+7k^×-20i^F=q300j^+0i^-140j^-220k^F=q160j^+-220k^F=5×10-6160j^+-220k^F=800j^+-1100k^×10-6N

Hence, the net electromagnetic force on the particle isF=800j^+-1100k^×10-6N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 28-55, an electron moves at speed v=100m/salong an xaxis through uniform electric and magnetic fields. The magnetic field is directed into the page and has magnitude5.00T. In unit-vector notation, what is the electric field?

Figure 28-31 gives snapshots for three situations in which a positively charged particle passes through a uniform magnetic field B. The velocitiesVof the particle differ in orientation in the three snapshots but not in magnitude. Rank the situations according to (a) the period, (b) the frequency, and (c) the pitch of the particle’s motion, greatest first.

Figure 28-52 gives the orientation energy Uof a magnetic dipole in an external magnetic field B, as a function of angle ϕ between the directions B, of and the dipole moment. The vertical axis scale is set by Us=2.0×10-4J. The dipole can be rotated about an axle with negligible friction in order that to change ϕ. Counterclockwise rotation from ϕ=0yields positive values of ϕ, and clockwise rotations yield negative values. The dipole is to be released at angle ϕ=0with a rotational kinetic energy of 6.7×10-4J, so that it rotates counterclockwise. To what maximum value of ϕwill it rotate? (What valueis the turning point in the potential well of Fig 28-52?)

Prove that the relation τ=NiABsinθholds not only for the rectangular loop of Figure but also for a closed loop of any shape. (Hint:Replace the loop of arbitrary shape with an assembly of adjacent long, thin, approximately rectangular loops that are nearly equivalent to the loop of arbitrary shape as far as the distribution of current is concerned.)

Figure 28-46 shows a wood cylinder of mass m=0.250kg and lengthL=0.100m,withN=10.0 turns of wire wrapped around it longitudinally, so that the plane of the wire coil contains the long central axis of the cylinder. The cylinder is released on a plane inclined at an angle θ to the horizontal, with the plane of the coil parallel to the incline plane. If there is a vertical uniform magnetic field of magnitude0.500T , what is the least current ithrough the coil that keeps the cylinder from rolling down the plane?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free