Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bainbridge’s mass spectrometer, shown in Fig. 28-54, separates ions having the same velocity. The ions, after entering through slits, S1and S2, pass through a velocity selector composed of an electric field produced by the charged plates Pand P', and a magnetic field Bperpendicular to the electric field and the ion path. The ions that then pass undeviated through the crossedEand Bfields enter into a region where a second magnetic field Bexists, where they are made to follow circular paths. A photographic plate (or a modern detector) registers their arrival. Show that, for the ions, q/m=E/rBB,where ris the radius of the circular orbit.

Short Answer

Expert verified

For Bainbridge’s mass spectrometer, qm=ErBB'

Step by step solution

01

Given

Bainbridge’s mass spectrometer contains magnetic field B, which is perpendicular to the electric field E and path of ion. There is a magnetic field B’, which makes the ions to follow a circular path.

02

Understanding the concept

By using the concept of crossed fields (electric and magnetic) and circulating charged particle in and magnetic field, we will prove thatqm=ErBB'

Formula:

Magnetic force FB=qvB

Electric forceFE=qE

Centripetal forceF=(mv2)/r

03

Show that, for the ions, q/m=E/rBB , where r is the radius of the circular orbit.

In Bainbridge’s mass spectrometer, ions are moving with velocity v in the presence of both an electric field E and magnetic field B. Hence ions experience both:

Magnetic force FB=qvB

Electric force FE=qE

Thus the Lorentz force will be

F=qE+qvB

If we adjust two fields such that they cancel each other,

F=0

qE=qvBv=EB··1

Now, after passing through the crossed field, the ions are made to follow a circular path by applying magnetic field B’. Centripetal force is provided by the magnetic field B’.

Magnetic force,

FB'=qvB'

Centripetal force,

F=(mv2)/r

Equating these two equations, we get

qvB'=(mv2)r

Rearranging the equation,

qm=v(B'r)

Using equation 1, we get

qm=E(rBB')

And hence it is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 28-36, a particle moves along a circle in a region of uniform magnetic field of magnitudeB=4.00mT. The particle is either a proton or an electron (you must decide which). It experiences a magnetic force of magnitude 3.20×10-15N. What are (a) the particle’s speed, (b) the radius of the circle, and (c)the period of the motion?

In Fig. 28-30, a charged particle enters a uniform magnetic field with speedv0 , moves through a halfcirclein timeT0 , and then leaves the field

. (a) Is the charge positive or negative?

(b) Is the final speed of the particle greater than, less than, or equal tov0 ?

(c) If the initial speed had been0.5v0 , would the time spent in field have been greater than, less than, or equal toT0 ?

(d) Would the path have been ahalf-circle, more than a half-circle, or less than a half-circle?

The bent wire shown in Figure lies in a uniform magnetic field. Each straight section is 2.0 m long and makes an angle of θ=60owith the xaxis, and the wire carries a current of 2.0A. (a) What is the net magnetic force on the wire in unit vector notation if the magnetic field is given by 4.0k^ T? (b) What is the net magnetic force on the wire in unit vector notation if the magnetic field is given by 4.0i^T?

Question: A proton travels through uniform magnetic and electric fields. The magnetic fieldis B=-2.5i^mT.At one instant the velocity of the proton is v=2000j^m/s At that instant and in unit-vector notation, what is the net force acting on the proton if the electric field is (a) role="math" localid="1663233256112" 4.00k^V/m, (b) -4.00k^V/mand (c)4.00i^V/m?

A wire of length 25.0cm carrying a current of 4.51mAis to be formed into a circular coil and placed in a uniform magnetic fieldBof magnitude 5.71mT. If the torque on the coil from the field is maximized. What are (a) the angle between Band the coil’s magnetic dipole moment? (b) the number of turns in the coil? (c) What is the magnitude of that maximum torque?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free