Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Physicist S. A. Goudsmit devised a method for measuring the mass of heavy ions by timing their period of revolution in a known magnetic field. A singly charged ion of iodine makes 7revin a 45.0mTfield in 1.29ms. Calculate its mass in atomic mass units.

Short Answer

Expert verified

The mass of the iodine ion in atomic mass unit is m=127u.

Step by step solution

01

Given

  1. The number of revolutions of the charged iodine ion is n=7rev.
  2. The magnetic field magnitude is B=45.0mT=45.0×10-3T.
  3. The period of revolution for the iodine ion is T=1.29ms=1.29×10-3s.
02

Understanding the concept

By using formula for the period of revolution for the iodine ion, we can find the mass of the iodine ion.

Formula:

The period of revolution for the iodine ion is

T=2πmBq

03

Calculate the mass in atomic mass units

The period of revolution for the iodine ion is

T=2πmBq

Therefore, the mass of iodine ion is

localid="1662898371084" m=BqT2π

m=(45.0×10-3T)(1.60×10-19C)×(1.29×10-3s)(7×(2π)×(1.66×10-27kg/u))

Where n=7rev is the number of revolutions.

Hence the mass of the iodine ion in atomic mass unit is m=127u.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wire 1.80 m long carries a current of13.0 A and makes an angle of 35.0°with a uniform magnetic field of magnitudeB=1.50 T. Calculate the magnetic force on the wire.

In Figure, a metal wire of mass m = 24.1 mg can slide with negligible friction on two horizontal parallel rails separated by distance d = 2.56 cm. The track lies in a vertical uniform magnetic field of magnitude 56.3 mT. At time t = 0, device Gis connected to the rails, producing a constant current i = 9.13 mA in the wire and rails (even as the wire moves). Att = 61.1 ms, (a) what is the wire’s speed? (b) What is the wire’s direction of motion (left or right)?

The coil in Figure carries current i=2.00Ain the direction indicated, is parallel to an xz plane, has 3.00turns and an area of 4.00×10-3m2, and lies in a uniform magnetic field B=(2.00i^-3.00j^-4.00k^)mT(a) What are the orientation energy of the coil in the magnetic field (b)What are the torque (in unit-vector notation) on the coil due to the magnetic field?

A wire50.0cmlong carries a current 0.500A in the positive direction of an xaxis through a magnetic field B=(3.00mT)j^+(10.0mT)k^. In unit-vector notation, what is the magnetic force on the wire?

Figure 28-24 shows a metallic, rectangular solid that is to move at a certain speed vthrough the uniform magnetic fieldB. The dimensions of the solid are multiples of d, as shown.You have six choices for the direction of the velocity: parallel to x, y, or zin either the positive or negative direction.

(a) Rank the six choices according to the potential difference set up across the solid, greatest first.

(b) For which choiceis the front face at lower potential?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free