Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 28-22 shows three situations in which a positively charged particle moves at velocityVthrough a uniform magnetic field Band experiences a magnetic forceFBIn each situation, determine whether the orientations of the vectors are physically reasonable.

Short Answer

Expert verified

The orientation of vectors in figure(b) is the only physically reasonable vectors

Step by step solution

01

Determining the concept

Use the right hand rule to find the direction of force. For the possible orientation, with three vectors mutually perpendicular. From this, predict whether the orientation of the vectors is physically reasonable or not in the given figures.

02

Determinewhether the orientation of the vectors are physically reasonable

For fig. (a) Orientation of vectors is not possible because velocityVis not perpendicular to magnetic forceFB.

For fig. (b) Orientation of vectors is possible because forceFis perpendicular to velocityand magnetic fieldB.

For fig. (c) Orientation of vectors is not possible because velocity Bis not perpendicular to magnetic force FB

Hence, the orientation of vectors in figure(b) is the only physically reasonable vectors.

Therefore, using the right hand rule find the direction of force, and it must be perpendicular to both velocity and magnetic field.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Physicist S. A. Goudsmit devised a method for measuring the mass of heavy ions by timing their period of revolution in a known magnetic field. A singly charged ion of iodine makes 7revin a 45.0mTfield in 1.29ms. Calculate its mass in atomic mass units.

An electron has an initial velocity of (12.0j^+15.0k^) km/s and a constant acceleration of (2.00×1012 m/s2)i^in a region in which uniform electric and magnetic fields are present. If localid="1663949206341" B=(400μT)i^find the electric fieldlocalid="1663949212501" E.

a) In Checkpoint 5, if the dipole moment is rotated from orientation 2 to orientation 1 by an external agent, is the work done on the dipole by the agent positive, negative, or zero?

(b) Rank the work done on the dipole by the agent for these three rotations, greatest first.21,24,23

Figure shows a wire ring of radiusa=1.8cmthat is perpendicular to the general direction of a radially symmetric, diverging magnetic field. The magnetic field at the ring is everywhere of the same magnitude B=3.4mT, and its direction at the ring everywhere makes an angle θ=20°with a normal to the plane of the ring. The twisted lead wires have no effect on the problem. Find the magnitude of the force the field exerts on the ring if the ring carries a current i=4.6mA.

An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field.

(a)Calculate the speed of the electron?

(b)Find the radius of its path in the magnetic field.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free