Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A proton traveling at23.00with respect to the direction of a magnetic field of strength2.60mTexperiences a magnetic force of6.50×10-17N. (a)Calculate the proton’s speed. (b)Find its kinetic energy in electron-volts.

Short Answer

Expert verified

a. Velocity of proton is4.00×105ms.

b. Kinetic energy of the proton is835ev

Step by step solution

01

Given

=23.00B=2.60mT=2.60×10-3TFB=6.50×10-17N

02

Determining the concept

Find the velocity of the proton using the formula for magnetic field in terms of charge and velocity of proton. Then using the formula for K.E, find the kinetic energy of the proton.

Formulae are as follow:

FB=evBsinK.E.=12mv2

Where, FB is magnetic force, v is velocity, m is mass, K.E. is kinetic energy, B is magnetic field, e is charge of particle.

03

(a) Determining the proton’s speed 

The magnetic force experienced by the proton is,

FB=evBsin

Hence, velocity of proton is,

v=FBeBsinv=6.50×10-171.6×10-192.60×10-3sin23.00v=399891~4.00×105ms

Hence, the velocity of proton is 4.00×105ms.

04

(b) Determining the kinetic energy of the proton

Kinetic energy of the proton is,

K.E=12mv2K.E=121.67×10-273998912K.E=1.3352×10-16JK.E=1.3352×10-161.6×10-19K.E=834.5~835eV

Hence, the kinetic energy of the proton is 835 eV .

Therefore, by using the formula for magnetic field in terms of charge and velocity of proton and the formula for K.E, the velocity and kinetic energy of proton can be determined.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The bent wire shown in Figure lies in a uniform magnetic field. Each straight section is 2.0 m long and makes an angle of θ=60owith the xaxis, and the wire carries a current of 2.0A. (a) What is the net magnetic force on the wire in unit vector notation if the magnetic field is given by 4.0k^ T? (b) What is the net magnetic force on the wire in unit vector notation if the magnetic field is given by 4.0i^T?

Figure 28-28 shows the path of an electron in a region of uniform magnetic field. The path consists oftwo straight sections, each between a pair of uniformly charged plates, and two half-circles. Which plate isat the higher electric potential in

(a) the top pair of plates and

(b) the bottom pair?

(c) What is the direction of the magnetic field?

An electron is accelerated from rest through potential difference Vand then enters a region of uniform magnetic field, where itundergoes uniform circular motion. Figure 28-38 gives the radius rof thatmotion versus V1/2. The vertical axis scale is set byrs=3.0mmand the horizontal axis scale is set by Vs12=40.0V12What is the magnitude of the magnetic field?

An electron moves in a circle of radiusr=5.29×10-11mwith speed 2.19×106ms. Treat the circular path as a current loop with a constant current equal to the ratio of the electron’s charge magnitude to the period of the motion. If the circle lies in a uniform magnetic field of magnitude B=7.10mT, what is the maximum possible magnitude of the torque produced on the loop by the field?

Figure 28-24 shows a metallic, rectangular solid that is to move at a certain speed vthrough the uniform magnetic fieldB. The dimensions of the solid are multiples of d, as shown.You have six choices for the direction of the velocity: parallel to x, y, or zin either the positive or negative direction.

(a) Rank the six choices according to the potential difference set up across the solid, greatest first.

(b) For which choiceis the front face at lower potential?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free