Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 29-32 shows four circular Amperian loops (a, b, c, d) and, in cross section, four long circular conductors (the shaded regions), all of which are concentric. Three of the conductors are hollow cylinders; the central conductor is a solid cylinder. The currents in the conductors are, from smallest radius to largest radius, 4 A out of the page, 9 A into the page, 5 A out of the page, and 3 A into the page. Rank the Amperian loops according to the magnitude ofB.dsaround each, greatest first.

Short Answer

Expert verified

The ranking of the Amperian loops according to the magnitude of B.dsaround each is b>a>d>c.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1: Given

  • Figure showing four circular Amperian loops.
  • The current is uniform across the wire’s circular cross-section.
02

Determining the concept.

Using Ampere’s law, Rank theloops according to the magnitude offrom the corresponding values of the magnitude of enclosed currents.

Formulae are as follows:

B.ds=μ0ienc

Where,

B=is the magnetic field,

role="math" localid="1663001431872" ds=is the infinitesimal segment of the integration path,

μ0=is the empty's permeability,

i=is the enclosed electric current by the path.

03

Determining the ranking of Amperian loops according to the magnitude  ∮B→.ds→.

According to Ampere’s law,

B.ds=μ0ienc

So,

B.ds=μ0ienc

From the given figure, it interprets that,

role="math" localid="1663001760102" ienc,a=4Aienc,b=5Aienc,c=0Aienc,d=3A

Hence, the ranking of Amperian loops according to the magnitude of B.dsaround each is b>a>d>c.

Ampere’s law gives the relation between magnetic flux and current enclosed by a loop.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Two long straight thin wires with current lie against an equally long plastic cylinder, at radius R=20.0cmfrom the cylinder’s central axis.

Figure 29-58ashows, in cross section, the cylinder and wire 1 but not wire 2. With wire 2 fixed in place, wire 1 is moved around the cylinder, from angle localid="1663154367897" θ1=0°to angle localid="1663154390159" θ1=180°, through the first and second quadrants of the xycoordinate system. The net magnetic field Bat the center of the cylinder is measured as a function of θ1. Figure 29-58b gives the x component Bxof that field as a function of θ1(the vertical scale is set by Bxs=6.0μT), and Fig. 29-58c gives the y component(the vertical scale is set by Bys=4.0μT). (a) At what angle θ2 is wire 2 located? What are the (b) size and (c) direction (into or out of the page) of the current in wire 1 and the (d) size and (e) direction of the current in wire 2?

In Figure 29-46 two concentric circular loops of wire carrying current in the same direction lie in the same plane. Loop 1 has radius1.50cm and carries 4.00mA. Loop 2 has radius2.50cmand carries 6.00mA.Loop 2 is to be rotated about a diameter while the net magnetic field Bset up by the two loops at their common center is measured. Through what angle must loop 2 be rotated so that the magnitude of that net field is 100nT?

Figure 29-67 shows a cross section across a diameter of a long cylindrical conductor of radius a=2.00cmcarrying uniform current 170A. What is the magnitude of the current’s magnetic field at radial distance (a) 0 (b) 1.00 cm, (c) 2.00 cm (wire’s surface), and (d) 4.00 cm?

Figure 29-62 shows, in cross section, two long straight wires held against a plastic cylinder of radius20.0cm. Wire 1 carries currentrole="math" localid="1663151041166" i1=60.0mAout of the page and is fixed in place at the left side of the cylinder. Wire 2 carries currenti2=40.0mAout of the page and can be moved around the cylinder. At what (positive) angleθ2should wire 2 be positioned such that, at the origin, the net magnetic field due to the two currents has magnitude80.0nT?

Figure 29-30 shows four circular Amperian loops (a, b, c, d) concentric with a wire whose current is directed out of the page. The current is uniform across the wire’s circular cross section (the shaded region). Rank the loops according to the magnitude of B.dsaround each, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free