Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two long straight wires are parallel and 8.0cmapart .They are to carry equal currents such that the magnetic field at a point halfway between them has magnitude 300μT. (a) Should the currents be in the same or opposite directions? (b) How much current is needed?

Short Answer

Expert verified
  1. The direction of current in the wire should be opposite each other
  2. The amount of current needed isI=30A

Step by step solution

01

Given

  1. The distance between two wires isd=8.0cm=8.0×10-2m
  2. Magnetic field isB=300μT=300×10-6T
02

Determine the concept

Use the concept of magnetic field at the center of circular arc. Using the equation, find the magnetic field at the given point. Using right hand rule determine the direction of the magnetic field.

Formulae:

B=μ0iϕ4πR

03

(a) Figure out if the currents should be in the same or opposite directions

If current in the wires is equal in magnitude and opposite in direction, then in the region half way between the wires, the magnetic field due to current carrying wires is equal, and they are in the same direction. So they will be added.

If the currents in the wires are in the same direction, then the region at halfway between the wires’ magnetic fields due to current-carrying wires is equal in magnitude and opposite in direction. Thus, net magnetic field will become zero.

But here, the magnetic field in the region at half way between the wires is not zero. So, the direction of current in the wire should be opposite each other.

04

(b) Calculate the current needed

Consider the diagram for the condition as follows:

The magnitude of magnetic field due to first long wire carrying currentI at perpendicular distanceRis given as follows

B1=μI2πR

The magnitude of the magnetic field due to the second long wire carrying current I at perpendicular distance Ris given as follows

B2=μI2πR

So, net magnetic field is addition of these two as follows

B=B+B2B=μI2πR+μI2πRB=μIπRI=B×π×Rμ

Substitute the values and solve as:

I=300×10-6T×π×4×10-2m4π×10-7N/A2I=30A

Hence the current is, 30A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 29-80 shows a cross-section of a long cylindrical conductor of radius a=4cmcontaining a long cylindrical hole of radiusb=1.50cm. The central axes of the cylinder and hole are parallel and are distanced=2cmapart; currentis uniformly distributed over the tinted area. (a) What is the magnitude of the magnetic field at the center of the hole? (b) Discuss the two special casesb=0andd=0.

Question: Figure 29-56ashows two wires, each carrying a current .Wire 1 consists of a circular arc of radius Rand two radial lengths; it carries current i1=2.0Ain the direction indicated. Wire 2 is long and straight; it carries a current i2 that can be varied; and it is at distanceR2from the center of the arc. The net magnetic fieldB due to the two currents is measured at the center of curvature of the arc. Figure 29-56bis a plot of the component of in the direction perpendicular to the figure as a function of current i2. The horizontal scale is set byi2s=1.00A. What is the angle subtended by the arc?

Question: Two long straight thin wires with current lie against an equally long plastic cylinder, at radius R=20.0cmfrom the cylinder’s central axis.

Figure 29-58ashows, in cross section, the cylinder and wire 1 but not wire 2. With wire 2 fixed in place, wire 1 is moved around the cylinder, from angle localid="1663154367897" θ1=0°to angle localid="1663154390159" θ1=180°, through the first and second quadrants of the xycoordinate system. The net magnetic field Bat the center of the cylinder is measured as a function of θ1. Figure 29-58b gives the x component Bxof that field as a function of θ1(the vertical scale is set by Bxs=6.0μT), and Fig. 29-58c gives the y component(the vertical scale is set by Bys=4.0μT). (a) At what angle θ2 is wire 2 located? What are the (b) size and (c) direction (into or out of the page) of the current in wire 1 and the (d) size and (e) direction of the current in wire 2?

Each of the eight conductors in Figure carries 2.0Aof current into or out of the page. Two paths are indicated for the line integral. B.ds(a) What is the value of the integral for path 1 and (b) What is the value of the integral for path 2?

A long solenoid has 100 turns/cmand carries current iAn electron moves within the solenoid in a circle of radius 2.30cmperpendicular to the solenoid axis. The speed of the electron is 0.0460c(c= speed of light). Find the currentiin the solenoid.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free