Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 29-88 shows a cross section of a long conducting coaxial cable and gives its radii (a,b,c). Equal but opposite currents iare uniformly distributed in the two conductors. Derive expressions for B (r) with radial distance rin the ranges (a) r < c, (b) c< r <b , (c) b < r < a, and (d) r > a . (e) Test these expressions for all the special cases that occur to you. (f) Assume that a = 2.0 cm, b = 1.8 cm, c = 0.40 cm, and i = 120 A and plot the function B (r) over the range 0 < r < 3 cm .

Short Answer

Expert verified
  1. B=μ0ir2πc2.
  2. B=μ0i2πr
  3. B=μ0i2πr·a2-r2a2-b2
  4. B=0
  5. Tested the expressions for all the special cases.
  6. The graph is drawn below.

Step by step solution

01

Given

  • The radius of the central solid cylindrical part of the cablec=0.40cm=0.40×10-2m .
  • The inner radius of the outer hollow cylindrical part of the cable b=1.8cm=1.8×10-2m.
  • The outer radius of the outer hollow cylindrical part of the cablea=2cm=2.0×10-2m .
  • Current through inner and outer cylindrical part i = 120 A flowing in the opposite sense.
02

Understanding the concept

For this problem, we can use Ampere’s law by considering a suitable Ampere loop to find the magnetic field at the given point over the specified region. After that, we can find out the current enclosed in the ampere loop. Finally, we get the expression for the Bfield at the particular point.

Formula:

B·ds=μ0Ienclosed

03

(a) Derive expressions for B (r) with radial distance r  in the range r < c

For r < c,

B·ds=μ0IenclosedBds=μ0IenclosedB·2πr=μ0IenclosedB=μ0Ienclosed2πr

Now let’s findthecurrent enclosed in the ampere loop of radius r:

Ienclosed=πr2πc2i=r2c2i

So we get,

B=μ02πrr2c2=μ0ir2πc2

Hence,B=μ0ir2πc2.

04

(b) Derive expressions for B (r)  with radial distance r in the range  c < r < b

Forc < r < b

Now let’s find the current enclosed in the ampere loop of radius r:

B·ds=μ0IenclosedBds=μ0IenclosedB·2πr=μ0IenclosedB=μ0Ienclosed2πr

Ienclosed=i, so we getB=μ0i2πr

Hence,B=μ0i2πr

05

(c) Derive expressions for B (r) with radial distance r in the range b < r < a

Forb < r < a

B·ds=μ0IenclosedBds=μ0IenclosedB·2πr=μ0IenclosedB=μ0Ienclosed2πr

Let’s findthecurrent enclosed in the ampere loop of radiusr:

Ienclosed=i-ir2-b2a2-b2=a2-r2a2-b2iIenclosed=a2-r2a2-b2i

Hence using this, we get B=μ0i2πr·a2-r2a2-b2.

06

(d) Derive expressions for B (r) with radial distance r in the range r > a

For r > a

Current through the inner and outer cylindrical part is i flowing in the opposite direction, so the current enclosed in the Ampere loop of radius r

Ienclosed=0.0

Hence B=0.0.

07

(e) Test these expressions for all the special cases

The B (r)for the special cases:

We have

Br=μ0i2πr·a2-r2a2-b2

When a = 0, we get

Br=μ0i2πr·0-r20-b2=μ0i2πr·r2b2=μ0i2π·rb2

Whenr = b,we get

Br=μ0i2πr·a2-r2a2-b2=μ0i2πb·a2-b2a2-b2=μ0i2πb

When r = a, we get

Br=μ0i2πa·a2-a2a2-b2=μ0i2πa·0=0.0

When b = 0, we get

Br=μ0i2πr·a2-r2a2-0=μ0i2πr·1-r2a2

Hence, it is tested the expressions for all special cases.

08

(f) Plot the function B (r) over the range 0 < r < 3 cm

The plot of the function B (r) over the range 0 < r < 3 cm and i=120A:c=0.40cm=0.40×10-2m, b=1.8cm=1.8×10-2m,a=2cm=2.0×10-2m.

Hence the graph is drawn.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long, hollow, cylindrical conductor (with inner radius 2.0mm and outer radius 4.0mm) carries a current of 24A distributed uniformly across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 24A in the opposite direction. What is the magnitude of the magnetic field (a) 1.0mm,(b) 3.0mm, and (c) 5.0mm from the central axis of the wire and cylinder?

In a particular region there is a uniform current density of 15A/m2in the positive z direction. What is the value of B.dswhen that line integral is calculated along the three straight-line segments from (x, y, z) coordinates (4d, 0, 0) to (4d, 3d, 0) to (0, 0, 0) to (4d, 0, 0), where d=20cm?

Question: Figure 29-56ashows two wires, each carrying a current .Wire 1 consists of a circular arc of radius Rand two radial lengths; it carries current i1=2.0Ain the direction indicated. Wire 2 is long and straight; it carries a current i2 that can be varied; and it is at distanceR2from the center of the arc. The net magnetic fieldB due to the two currents is measured at the center of curvature of the arc. Figure 29-56bis a plot of the component of in the direction perpendicular to the figure as a function of current i2. The horizontal scale is set byi2s=1.00A. What is the angle subtended by the arc?

In Figure, five long parallel wires in an xyplane are separated by distanced=8.00cm, have lengths of10.0m,and carry identical currents of3.00Aout of the page. Each wire experiences a magnetic force due to the other wires. In unit-vector notation,(a) What is the net magnetic force on wire 1, (b) What is the net magnetic force on wire 2, (c) What is the net magnetic force on wire 3, (d) What is the net magnetic force on wire 4, and (e) What is the net magnetic force on wire 5?

In Fig. 29-43, two long straight wires at separation d=16.0cmcarry currents i1=3.61mAand i2=3.00i1out of the page. (a) Where on the x axis is the net magnetic field equal to zero? (b) If the two currents are doubled, is the zero-field point shifted toward wire 1, shifted toward wire 2, or unchanged?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free