Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of λ; the current emerges perpendicularly out of the page. (a) Use the Biot – Savart law and symmetry to show that for all pointsP above the sheet and all points P'below it, the magnetic fieldBis parallel to the sheet and directed as shown. (b) Use Ampere’s law to prove that B=12·μ0λ at all points P andP'.

Short Answer

Expert verified

(a) Direction of field at a pointP is along negative x axis , Direction of field at a point P'is along positive x axis

(b) We can show thatB=12·μ0λ

Step by step solution

01

Given

  • Current per unit length isλ=I/Lx
  • I is the current through sheet
02

Understanding the concept

Using the right hand thumb rule, we can find the direction of the field produced by the current carrying wires. Using Ampere’s law, we can find the field in terms of current per unit length.

Formula:

B·ds=μ0Ienclosed

03

(a) Calculate the direction of field at a point P and Direction of field at a point   P'

Referring fig 29-84, from the direction of current and using right hand thumb rule, we get thedirection of the field at pointPalong negativex axis. Direction of Field at a pointP'is along positive x axis.

04

(b) Show that B=12·μ0λ

Now to show the second part, consider Amperes law, let’s assume that width of the wire along x direction isLxthen

B·ds=μ0IenclosedBdx=μ0λLxB·Lx=μ0λLxB=μ0λ

By considering the upper and lower part of sheet, and by symmetry, we have half contribution of original so thatB=μ0λ2

Hence it is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that the magnitude of the magnetic field produced at the center of a rectangular loop of wire of lengthLand widthW, carrying a current i, is

B=2μ0iπ·(L2+W2)12LW

Figure a shows, in cross section, three current-carrying wires that are long, straight, and parallel to one another. Wires 1 and 2 are fixed in place on an xaxis, with separation d. Wire 1 has a current of0.750A, but the direction of the current is not given. Wire 3, with a current of0.250Aout of the page, can be moved along the xaxis to the right of wire 2. As wire 3 is moved, the magnitude of the net magnetic forceF2on wire 2 due to the currents in wires 1 and 3 changes. The xcomponent of that force is F2xand the value per unit length of wire 2 isF2x/L2. Figure bgivesF2x/L2versus the position xof wire 3. The plot has an asymptoteF2xL2=-0.627μN/masx.The horizontal scale is set byxs=12.0cm. (a) What are the size of the current in wire 2 and (b) What is the direction (into or out of the page) of the current in wire 2?

Two wires, both of length L, are formed into a circle and a square, and each carries currenti. Show that the square produces a greater magnetic field at its center than the circle produces at its center.

Figure 29-67 shows a cross section across a diameter of a long cylindrical conductor of radius a=2.00cmcarrying uniform current 170A. What is the magnitude of the current’s magnetic field at radial distance (a) 0 (b) 1.00 cm, (c) 2.00 cm (wire’s surface), and (d) 4.00 cm?

Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile Psits between two wide rails of circular cross section; a source of current sends current through the rails and through the(conducting) projectile (a fuse is not used). (a) Let wbe the distance between the rails, Rthe radius of each rail, and i the current. Show that the force on the projectile is directed to the right along the rails and is given approximately byF=i2μ02π·ln(w+RR)

(b) If the projectile starts from the left end of the rails at rest, find the speed vat which it is expelled at the right. Assume that I = 450 kA, w = 12 mm, R = 6.7 cm, L = 4.0 m, and the projectile mass is 10 g.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free