Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 29-81 shows a wire segment of length Δs=3cm, centered at the origin, carrying current i=2A in the positive ydirection (as part of some complete circuit). To calculate the magnitude of the magnetic field produced by the segment at a point several meters from the origin, we can use B=μ04πiΔs×r^r2 as the Biot–Savart law. This is because r and u are essentially constant over the segment. Calculate (in unit-vector notation) at the(x,y,z)coordinates (a)localid="1663057128028" (0,0,5m)(b)localid="1663057196663" (0,6m,0)(c) localid="1663057223833" (7m,7m,0)and (d)(-3m,-4m,0)

Short Answer

Expert verified
  1. The magnetic field at the point (0,0,5m)is2.4×10-10Ti^.
  2. The magnetic field at the point (0,6m,0)islocalid="1663057848212" 0
  3. The magnetic field at the point (7m,7m,0)is localid="1663061887434" -4.3×101Tk^
  4. The magnetic field at the point (-3m,-4m,0)is1.44×10-10Tk^.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Identification of given data

  1. Length segments=3cm
  2. Current i=2A
02

Understanding the concept of Biot-Savart law

An equation known as the Biot-Savart Law describes the magnetic field produced by a steady electric current. It connects the electric current's strength, direction, length, and proximity to the magnetic field.

Formula:

B=μ04πiS×rr3

03

Calculate (in unit-vector notation) at the (x,y,z)   coordinates (a) (0, 0, 5 m)

In the figure, the co-ordinate axis is the center of the cylinder. By symmetry, we will get the same value of magnetic field if we take the cross-sectional area of the left or right side of the cylinder. We take the right side cross-sectional area of the cylinder.

Biot- Savart law can be written as-

B=μ04πiΔs×r^r2=μ04πiΔs×rr3

Δs=Δsj^

r=xi^+yj^+zk^

Δs×r=Δsj^×xi^+yj^+zk^

i^×j^=k^,j^×i^=-k^,j^×k^=i^,j^×j^=0

Δs×r=Δszi^-xk^

B=μ04πiΔszi^-xk^(x2+y2+z2)32

04

(a) Determining the magnetic field in the vector notation at (0, 0, 5 m) coordinates.

The magnetic field at the point: 0,0,5m

Herex=0,y=0,z=5m

Substituting in 1) we get,

B=4π×10-7T.m/A2A3×10-2m5i^-0k^m4π(02+02+5m2)32B=2.4×10-10Ti^

05

(b) Determining the magnetic field in the vector notation at (0, 6 m, 0) coordinates

The magnetic field at the point: 0,6m,0

Here x=0,y=6m,z=0

B=4π×10-7T.m/A2A3×10-2m0i^-0k^m4π(02+62+02)32m3B=0

06

(c) Determining the magnetic field in the vector notation at (7 m, 7 m, 0) coordinates.

The magnetic field at the point 7m,7m,0:

Herelocalid="1663061755332" x=7m,y=7m,z=0

localid="1663060711200" B=4π×10-7T.m/A2A3×10-2m0i^-7k^m4π(72+72+02)32m3B=-4.3×10-11Tk^

07

(d) Determining the magnetic field in the vector notation at  coordinates  (-3 m, -4 m, 0 ). 

The magnetic field at the point -3m,-4m,0:

Here , x=-3m,y=-4m,z=0

B=4π×10-7T.m/A2A3×10-2m0i^+3k^m4π[-32+-42+02)]32m3B=1.44×10-10Tk^

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 29-30 shows four circular Amperian loops (a, b, c, d) concentric with a wire whose current is directed out of the page. The current is uniform across the wire’s circular cross section (the shaded region). Rank the loops according to the magnitude of B.dsaround each, greatest first.

A toroid having a square cross section, 5.00cmon a side, and an inner radius of15.0cmhas500turnsand carries a current of0.800A. (It is made up of a square solenoid—instead of a round one as in Figure bent into a doughnut shape.) (a) What is the magnetic field inside the toroid at the inner radius and (b) What is the magnetic field inside the toroid at the outer radius?

Question: Figure 29-72 shows an arrangement known as a Helmholtz coil. It consists of two circular coaxial coils, each of200turnsand radiusR=25.0cm, separated by a distances=R. The two coils carry equal currentsi=12.2mAin the same direction. Find the magnitude of the net magnetic field at P, midway between the coils.

In Fig. 29-43, two long straight wires at separation d=16.0cmcarry currents i1=3.61mAand i2=3.00i1out of the page. (a) Where on the x axis is the net magnetic field equal to zero? (b) If the two currents are doubled, is the zero-field point shifted toward wire 1, shifted toward wire 2, or unchanged?

In Fig. 29-48 part of a long insulated wire carrying currenti=5.78mAis bentinto a circular section of radius R=1.89cm. In unit-vector notation, what is the magnetic field at the center of curvature Cif the circular section (a) lies in the plane of the page as shown and (b) is perpendicular to the plane of the page after being rotated 90°counterclockwise as indicated?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free