Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 29-81 shows a wire segment of length Δs=3cm, centered at the origin, carrying current i=2A in the positive ydirection (as part of some complete circuit). To calculate the magnitude of the magnetic field produced by the segment at a point several meters from the origin, we can use B=μ04πiΔs×r^r2 as the Biot–Savart law. This is because r and u are essentially constant over the segment. Calculate (in unit-vector notation) at the(x,y,z)coordinates (a)localid="1663057128028" (0,0,5m)(b)localid="1663057196663" (0,6m,0)(c) localid="1663057223833" (7m,7m,0)and (d)(-3m,-4m,0)

Short Answer

Expert verified
  1. The magnetic field at the point (0,0,5m)is2.4×10-10Ti^.
  2. The magnetic field at the point (0,6m,0)islocalid="1663057848212" 0
  3. The magnetic field at the point (7m,7m,0)is localid="1663061887434" -4.3×101Tk^
  4. The magnetic field at the point (-3m,-4m,0)is1.44×10-10Tk^.

Step by step solution

01

Identification of given data

  1. Length segments=3cm
  2. Current i=2A
02

Understanding the concept of Biot-Savart law

An equation known as the Biot-Savart Law describes the magnetic field produced by a steady electric current. It connects the electric current's strength, direction, length, and proximity to the magnetic field.

Formula:

B=μ04πiS×rr3

03

Calculate (in unit-vector notation) at the (x,y,z)   coordinates (a) (0, 0, 5 m)

In the figure, the co-ordinate axis is the center of the cylinder. By symmetry, we will get the same value of magnetic field if we take the cross-sectional area of the left or right side of the cylinder. We take the right side cross-sectional area of the cylinder.

Biot- Savart law can be written as-

B=μ04πiΔs×r^r2=μ04πiΔs×rr3

Δs=Δsj^

r=xi^+yj^+zk^

Δs×r=Δsj^×xi^+yj^+zk^

i^×j^=k^,j^×i^=-k^,j^×k^=i^,j^×j^=0

Δs×r=Δszi^-xk^

B=μ04πiΔszi^-xk^(x2+y2+z2)32

04

(a) Determining the magnetic field in the vector notation at (0, 0, 5 m) coordinates.

The magnetic field at the point: 0,0,5m

Herex=0,y=0,z=5m

Substituting in 1) we get,

B=4π×10-7T.m/A2A3×10-2m5i^-0k^m4π(02+02+5m2)32B=2.4×10-10Ti^

05

(b) Determining the magnetic field in the vector notation at (0, 6 m, 0) coordinates

The magnetic field at the point: 0,6m,0

Here x=0,y=6m,z=0

B=4π×10-7T.m/A2A3×10-2m0i^-0k^m4π(02+62+02)32m3B=0

06

(c) Determining the magnetic field in the vector notation at (7 m, 7 m, 0) coordinates.

The magnetic field at the point 7m,7m,0:

Herelocalid="1663061755332" x=7m,y=7m,z=0

localid="1663060711200" B=4π×10-7T.m/A2A3×10-2m0i^-7k^m4π(72+72+02)32m3B=-4.3×10-11Tk^

07

(d) Determining the magnetic field in the vector notation at  coordinates  (-3 m, -4 m, 0 ). 

The magnetic field at the point -3m,-4m,0:

Here , x=-3m,y=-4m,z=0

B=4π×10-7T.m/A2A3×10-2m0i^+3k^m4π[-32+-42+02)]32m3B=1.44×10-10Tk^

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 29-4, a wire forms a semicircle of radius R=9.26cmand two (radial) straight segments each of length L=13.1cm. The wire carries current i=34.8mA. What are the(a) magnitude and(b) direction (into or out of the page) of the net magnetic field at the semicircle’s center of curvature C?

The current density J inside a long, solid, cylindrical wire of radius a=3.1mm is in the direction of the central axis, and its magnitude varies linearly with radial distance rfrom the axis according toJ=J0r/a, where J0=310A/m2. (a) Find the magnitude of the magnetic field at role="math" localid="1663132348934" r=0, (b) Find the magnitude of the magnetic fieldr=a/2 , and(c) Find the magnitude of the magnetic field r=a.

A long vertical wire carries an unknown current. Coaxial with the wire is a long, thin, cylindrical conducting surface that carries a current of30mAupward. The cylindrical surface has a radius of3.0mm. If the magnitude of the magnetic field at a point5.0mmfrom the wire is1.0μT, (a) What are the size and(b) What is the direction of the current in the wire?

In Figure, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a=8.50cm. Each wire carries15.0A, and all the currents are out of the page. In unit-vector notation, what is the net magnetic force per meter of wire lengthon wire 1?

Figure 29-45 shows two current segments. The lower segment carries a current of i1=0.40Aand includes a semicircular arc with radius 5.0cm, angle 180°, and center point P. The upper segment carries current i2=2i1and includes a circular arc with radius 4.0cm, angle 120°, and the same center point P. What are the(a) magnitude and (b) direction of the net magnetic field at Pfor the indicated current directions? What are the (c)magnitude of if i1 is reversed and (d) direction B of if i1 is reversed?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free