Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The magnitude of the magnetic field 88.0cmfrom the axis of a long straight wire is7.30μT. What is the current in the wire?

Short Answer

Expert verified

The current in the wire is 32.1A.

Step by step solution

01

Given Data

  1. Distance R=88cm=0.88m
  2. The magnitude of magnetic field B=7.30μT
02

Understanding the concept

We use the formula of magnetic field due to a long straight wire at perpendicular distance from the axis to find the current in the wire.

Formula:

B=μ0i2πR

03

Calculate the current in the wire

The magnitude of magnetic field due to a long straight wire at perpendicular distance from axis is given by

B=μ0i2πR

WhereRis the distance from the axis of the wire andμois the permeability of the free space,iis the current flowing through the wire.

Solving for the current we get

i=2πRBμ0

localid="1663019175921" R=88cm=0.88m,B=7.30μT=7.30×10-6T,μ0=1.26×10-6T.m/A

i=2π0.88m7.30×10-6T4π×10-7T.m/A

i=32.1A

the current in the wire is32.1A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile Psits between two wide rails of circular cross section; a source of current sends current through the rails and through the(conducting) projectile (a fuse is not used). (a) Let wbe the distance between the rails, Rthe radius of each rail, and i the current. Show that the force on the projectile is directed to the right along the rails and is given approximately byF=i2μ02π·ln(w+RR)

(b) If the projectile starts from the left end of the rails at rest, find the speed vat which it is expelled at the right. Assume that I = 450 kA, w = 12 mm, R = 6.7 cm, L = 4.0 m, and the projectile mass is 10 g.

At a certain location in the Philippines, Earth’s magnetic field of 39μTis horizontal and directed due north. Suppose the net field is zero exactly8.0cmabove a long, straight, horizontal wire that carries a constant current. (a) What are the magnitude and (b) What is the direction of the current?

Question: In Fig. 29-77, a closed loop carries current 200mA. The loop consists of two radial straight wires and two concentric circular arcs of radii 2.0mand 4.0m. The angle is role="math" localid="1662809179609" θ=π4rad. What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at the center of curvature P?

In Figure 29-46 two concentric circular loops of wire carrying current in the same direction lie in the same plane. Loop 1 has radius1.50cm and carries 4.00mA. Loop 2 has radius2.50cmand carries 6.00mA.Loop 2 is to be rotated about a diameter while the net magnetic field Bset up by the two loops at their common center is measured. Through what angle must loop 2 be rotated so that the magnitude of that net field is 100nT?

Equation 29-4 gives the magnitude Bof the magnetic field set up by a current in an infinitely long straight wire, at a point Pat perpendicular distance R from the wire. Suppose that point P is actually at perpendicular distance Rfrom the midpoint of a wire with a finite length L.Using Eq. 29-4 to calculate Bthen results in a certain percentage error. What value must the ratio LRexceed if the percentage error is to be less than 1.00%? That is, what LRgives

BfromEq.29-4-BactualBactual100%=1.00%?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free