Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Fig 29-76 a conductor carries6.0Aalong the closed path abcdefgharunning along 8of the 12edges of a cube of edge length 10cm. (a)Taking the path to be a combination of three square current loops (bcfgb, abgha, and cdefc), find the net magnetic moment of the path in unit-vector notation.(b) What is the magnitude of the net magnetic field at the xyzcoordinates of(0,5.0m,0)?

Short Answer

Expert verified
  1. The net magnetic moment of the path in unit vector notation is 0.06Am2j^.
  2. The magnitude of the magnetic field at 0,0.5m,0is 9.6×10-11Tj^.

Step by step solution

01

Given Data

  • Current is i=0.6A
  • Length is l=10cm
02

Understanding the concept

We use the formula for the magnetic moment in terms of current and area in all three directions, and from that, we find the net magnetic moment. Then, we have to find the magnetic field from the magnetic moment.

Formula:

B=μμ2πy3

μ=iA


03

(a) Calculate net magnetic moment of path in unit vector notation

There is no enclosed area in x and z directions. There are only three edges with the current flowing through them for both x and z directions. Therefore, net magnetic field moment for x and z components of the patch are zero.

That means

μabgha=0

μcdefc=0

There is an enclosed area for the current flowing through y components. Therefore, the net magnetic field for y component of patch bcfgbis

role="math" localid="1662806597353" μbcfgb=iAj^=6.00A10×10-2m2j^=0.06Am2j^

Hence, the net magnetic moment of path in unit vector notation is (0.06Am2)j^.

04

(b) Calculate the magnitude of magnetic field at  (0, 0.5 m, 0)

The magnetic field is only in y direction, so

By=μμ2πy3=4π×10-7Hm0.06Am2j^2π×5.0m3=9.6×10-11Tj^

So the magnitude of magnetic field is is (9.6×10-11T)j^.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Two long wires lie in an xyplane, and each carries a current in the positive direction of the xaxis.Wire 1 is at y=10cmand carries role="math" localid="1662817900403" iA=6A; wire 2 is at role="math" localid="1662817917709" y=5cmand carries role="math" localid="1662817934093" iB=10A. (a) In unitvector notation, what is the net magnetic field at the origin? (b) At what value of ydoesrole="math" localid="1662818220108" B=0? (c) If the current in wire 1 is reversed, at what value of role="math" localid="1662818150179" ydoesB=0?

Figure a shows an element of length ds=1.00μmin a very long straight wire carrying current. The current in that element sets up a differential magnetic field at points in the surrounding space. Figure b gives the magnitudedBof the field for points2.5cmfrom the element, as a function of angle u between the wire and a straight line to the point. The vertical scale is set bydBs=60.0pT. What is the magnitude of the magnetic field set up by the entire wire at perpendicular distance2.5cmfrom the wire?


A circular loop of radius12cmcarries a current of15A. A flat coil of radius0.82cmhaving50turnsand a current of 1.3A, is concentric with the loop. The plane of the loop is perpendicular to the plane of the coil. Assume the loop’s magnetic field is uniform across the coil. (a) What is the magnitude of the magnetic field produced by the loop at its center and (b) What is the magnitude of the torque on the coil due to the loop?

Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile Psits between two wide rails of circular cross section; a source of current sends current through the rails and through the(conducting) projectile (a fuse is not used). (a) Let wbe the distance between the rails, Rthe radius of each rail, and i the current. Show that the force on the projectile is directed to the right along the rails and is given approximately byF=i2μ02π·ln(w+RR)

(b) If the projectile starts from the left end of the rails at rest, find the speed vat which it is expelled at the right. Assume that I = 450 kA, w = 12 mm, R = 6.7 cm, L = 4.0 m, and the projectile mass is 10 g.

A surveyor is using a magnetic compass 6.1m below a power line in which there is a steady current of 100A .(a) What is the magnetic field at the site of the compass due to the power line? (b) Will this field interfere seriously with the compass reading? The horizontal component of Earth’s magnetic field at the site is role="math" localid="1663130453654" 20mT .

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free