Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the magnitude of the magnetic dipole moment μ of the solenoid described in Problem 51?

Short Answer

Expert verified

The magnitude of the magnetic dipole moment is0.46Am2.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Listing the given quantities:

The length,l=25  cm=0.25m

The diameter,d=10  cm=0.10m

The number of turns,N=200

The current,i=0.29 A

02

Understanding the concept of magnetic field:

The magnitude of the magnetic dipole moment can be defined as the product of number of turns, current in that loop, and the area of that loop. Using this concept, you can calculate the magnitude of the magnetic dipole moment.

Formula:

The magnetic dipole moment is,

μ=NiA

Here, Nis the number of turns,i is the current,A is the area.

03

Calculations of the magnitude of the magnetic dipole moment:

To calculate the radius of the loop as

R=d2=0.10m2=0.05m

Now the magnetic dipole moment is given by,

μ=NiA=NiπR2=200×0.29A×3.14×(0.05m)2=0.46Am2

Hence, the magnitude of the magnetic dipole moment is 0.46Am2.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 29-44 point P1is at distance R=13.1cmon the perpendicular bisector of a straight wire of length L=18.0cm. carrying current. (Note that the wire is notlong.) What is the magnitude of the magnetic field at P1due to i?

Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile Psits between two wide rails of circular cross section; a source of current sends current through the rails and through the(conducting) projectile (a fuse is not used). (a) Let wbe the distance between the rails, Rthe radius of each rail, and i the current. Show that the force on the projectile is directed to the right along the rails and is given approximately byF=i2μ02π·ln(w+RR)

(b) If the projectile starts from the left end of the rails at rest, find the speed vat which it is expelled at the right. Assume that I = 450 kA, w = 12 mm, R = 6.7 cm, L = 4.0 m, and the projectile mass is 10 g.

In Fig. 29-43, two long straight wires at separation d=16.0cmcarry currents i1=3.61mAand i2=3.00i1out of the page. (a) Where on the x axis is the net magnetic field equal to zero? (b) If the two currents are doubled, is the zero-field point shifted toward wire 1, shifted toward wire 2, or unchanged?

In Fig. 29-4, a wire forms a semicircle of radius R=9.26cmand two (radial) straight segments each of length L=13.1cm. The wire carries current i=34.8mA. What are the(a) magnitude and(b) direction (into or out of the page) of the net magnetic field at the semicircle’s center of curvature C?

Figure 29-30 shows four circular Amperian loops (a, b, c, d) concentric with a wire whose current is directed out of the page. The current is uniform across the wire’s circular cross section (the shaded region). Rank the loops according to the magnitude of B.dsaround each, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free