Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A long solenoid has 100 turns/cmand carries current iAn electron moves within the solenoid in a circle of radius 2.30cmperpendicular to the solenoid axis. The speed of the electron is 0.0460c(c= speed of light). Find the currentiin the solenoid.

Short Answer

Expert verified

The current iin the solenoid isi=0.272A

Step by step solution

01

Identification of given data

n=100/0.01m

r=2.30cm=0.023m

v=0.0460c

02

Significance of magnetic field

The area in which the force of magnetism acts around a magnetic material or a moving electric charge is known as the magnetic field.

We can find the orbital radius of the electron by equating the magnitude of magnetic force and the centripetal force. For a long solenoid, we can find the currenti by using equation29-23.

Formula:

B=μ0in

F=qvB

F=mv2r

03

(a) Determining the current i in the solenoid  

For a charged particle in equilibrium, the centripetal force must be equal to the magnetic force, i.e.

mv2r=qvB

mvr=qB

r=mvqB

This is the orbital radius of the electron.

But for solenoid, the magnetic field isB=μ0in

Substituting this in the equation for radius

r=mv0in

Rearranging this equation for current

i=mv0rn=9.1×1031 kg×0.0460×3×108m/s1.6×1019 C×4π×107 NA-2×0.023 m×1000.01turns/m=0.272A

The current iin the solenoid isi=0.272A

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The magnitude of the magnetic field 88.0cmfrom the axis of a long straight wire is7.30μT. What is the current in the wire?

In Figure, point P is at perpendicular distance R=2.00cmfrom a very long straight wire carrying a current. The magnetic field Bset up at point Pis due to contributions from all the identical current length elements idsalong the wire. What is the distanceto the element making (a) The greatest contribution to field Band (b) 10.0% of the greatest contribution?

A surveyor is using a magnetic compass 6.1m below a power line in which there is a steady current of 100A .(a) What is the magnetic field at the site of the compass due to the power line? (b) Will this field interfere seriously with the compass reading? The horizontal component of Earth’s magnetic field at the site is role="math" localid="1663130453654" 20mT .

In Figure, a current i=10Ais set up in a long hairpin conductor formed by bending a wire into a semicircle of radiusR=5.0mm. Point bis midway between the straight sections and so distant from the semicircle that each straight section can be approximated as being an Infinite wire. (a)What are the magnitude and (b) What is the direction (into or out of the page) of Bat aand (c) What are the magnitude and (d) What is the direction B of at b?


A long vertical wire carries an unknown current. Coaxial with the wire is a long, thin, cylindrical conducting surface that carries a current of30mAupward. The cylindrical surface has a radius of3.0mm. If the magnitude of the magnetic field at a point5.0mmfrom the wire is1.0μT, (a) What are the size and(b) What is the direction of the current in the wire?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free