Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A solenoid 1.30 long and2.60cm in diameter carries a current of 1.80A. The magnetic field inside the solenoid is 23.0mT . Find the length of the wire forming the solenoid.

Short Answer

Expert verified
  1. The length of the wire forming the solenoid is 108m.

Step by step solution

01

Listing the given quantities 

l=1.30m

d=2.60cm=0.0260m

B=23mT=0.023T

i=18A

02

Understanding the concept of magnetic field and solenoid

We find the number of turns of the solenoid. Using the number of turns, we can find the total length of the wire used in making the solenoid.

B=μ0in=μ0iNl

03

Calculations of the length of the wire forming the solenoid  

The number of turns of the solenoid is

B=μ0iNl

Nl=Bμ0i

N=Blμ0i=0.023×1.301.26×106×181322

As we know that the length of the circular loop is the circumference of that loop. So, the total length of the solenoid is

L=2πrN

Since r=d2

Thus,

L=2π×0.02602×1322=π×0.0260×1322=107.98108m

The length of the wire forming the solenoid is108m .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long solenoid has 100 turns/cmand carries current iAn electron moves within the solenoid in a circle of radius 2.30cmperpendicular to the solenoid axis. The speed of the electron is 0.0460c(c= speed of light). Find the currentiin the solenoid.

Question: In Fig 29-55, two long straight wires (shown in cross section) carry currentsi1=30.0mAandi1=40.0mAdirectly out of the page. They are equal distances from the origin, where they set up a magnetic field. To what value must current i1be changed in order to rotate20.0°clockwise?

Figure 29-81 shows a wire segment of length Δs=3cm, centered at the origin, carrying current i=2A in the positive ydirection (as part of some complete circuit). To calculate the magnitude of the magnetic field produced by the segment at a point several meters from the origin, we can use B=μ04πiΔs×r^r2 as the Biot–Savart law. This is because r and u are essentially constant over the segment. Calculate (in unit-vector notation) at the(x,y,z)coordinates (a)localid="1663057128028" (0,0,5m)(b)localid="1663057196663" (0,6m,0)(c) localid="1663057223833" (7m,7m,0)and (d)(-3m,-4m,0)

In Fig. 29-54a, wire 1 consists of a circular arc and two radial lengths; it carries currenti1=0.50Ain the direction indicated. Wire 2, shown in cross section, is long, straight, and Perpendicular to the plane of the figure. Its distance from the center of the arc is equal to the radius Rof the arc, and it carries a current i2 that can be varied. The two currents set up a net magnetic fieldBat the center of the arc. Figure bgives the square of the field’s magnitude B2 plotted versus the square ofthe currenti22. The vertical scale is set byBs2=10.0×10-10T2what angle is subtended by the arc?

A toroid having a square cross section, 5.00cmon a side, and an inner radius of15.0cmhas500turnsand carries a current of0.800A. (It is made up of a square solenoid—instead of a round one as in Figure bent into a doughnut shape.) (a) What is the magnetic field inside the toroid at the inner radius and (b) What is the magnetic field inside the toroid at the outer radius?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free